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An operational understanding of  
the equal sign can hinder learning 

its relational meaning.
By Henry Borenson

ABalancing
Act

G lancing at Chandler’s Semiotics: The 
Basics (2007), I discovered that, gener-
ally speaking, signs have more than one 

meaning, depending on the context. Consider, 
for example, the meaning of the minus sign in 
the expression 2-3; it certainly does not mean 
subtraction. Similarly, the equal sign has various 
meanings, depending on the context in which 
it is used (Molina, Castro, and Castro 2009). The 
assumption that the equal sign can have only one 
meaning has led some educators to state that “it 
does not mean that the answer comes next.”

The use of the equal sign to indicate the 
unique numerical result of the sequence of 
computations that precede it (the “calculator 
use” of the equal sign) is a valid and necessary 
use of this sign (Ginsburg 1996; Falkner, Levi, 
and Carpenter 1999; Seo and Ginsburg 2003). 

However, understanding the relational 
meaning of the equal sign also is essential for 
success in mathematics, and particularly in 

algebra. Whereas such equations as 3x + 5 = 26 
can be understood knowing only the opera-
tional meaning of the equal sign (because 26 can 
be considered the result of the operations that 
appear to the left of the equal sign), examples 
such as 4 + 3 = __ + 2 and 4x + 2 = 2x + 6 can-
not (Kieran 1992). In these examples, the equal 
sign indicates equivalence between two sets of 
expressions, each one of which includes one or 
more operations within it. 

Is the relational meaning of the equal sign 
self-evident to students? Do elementary school 
students intuitively understand the relational 
meaning of the equal sign? In a survey of 
752 students in grades 1 –6, Falkner, Levi, and  
Carpenter (1999) found that only 5 percent of 
the students provided the correct response to 
the question 8 + 4 = __ + 5. As the authors noted, 
the equal sign usually is presented to elementary 
school students only “at the end of an equation, 
and only one number comes after it” (p. 233).  
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We can therefore conclude that the rela-
tional meaning of the equal sign is not 
something that students find intuitive 
or self-evident, nor is it an under-
standing that naturally follows 
from knowing the operational 
meaning of the equal sign. 

This result should not be 
too surprising if we con-
sider that the meanings  
of signs are arbitrary, 
that they are deter-
mined by convention  
( C h a n d l e r  2 0 0 7 ;  
Carpenter, Franke, 
and Levi 2003). 
C o n v e n t i o n 
might have dic-
tated, for example, 
that the equal sign 
would be the symbol used 

specifically to indicate the 
answer to the set of calcula-

tions preceding it, and that it 
should be read only from left to 

right (see Seo and Ginsburg 2003, for 
an alternative symbol to the equal sign 

for displaying the answer to a set of cal-
culations). For equivalence, mathematical 

convention might have provided a different 
symbol, such as ≡ or ⇔. Neither of these 

possibilities was realized. Instead, the 
equal sign is used to indicate both 
meanings. 

However, a computer cannot func-
tion if the same symbol has more than one 
meaning. Hence, in the computer language 
C++, the symbol = = (two equal signs next to 

each other) is the symbol for equivalence. 
A single equal sign is used for assign-
ment of a value—the operational 
meaning of the equal sign—except fa
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that the order is reversed. In figure 1, the com-
puter must first evaluate the given expression 
before it can consider if it is equivalent to 24. 

These examples illustrate the folly of expect-
ing students who know the operational meaning 
of the equal sign to intuit the sign’s relational 
meaning. It is simply a matter of convention 
that in human mathematics, the equal sign has 
both operational and relational, or equivalence, 
meanings.

Triggering the operational 
meaning
Let’s consider the following scenario with a class 
of elementary school students who have not yet 
been introduced to the relational meaning of 

the equal sign. The teacher presents a problem 
such as 8 + 4 = __ + 5 and asks students what they 
think the missing number is and to justify their 
answers. On the basis of students’ prior experi-
ence with the equal sign, a large majority will 
respond with the answer 12 because “the answer 
follows the equal sign.” That is, the equal sign 
will tend to trigger the operational definition. 
If asked, “What about the plus five?” they have 
a ready answer: “Maybe they just put it there 
to confuse us” or “to distinguish what is impor-
tant,” as is often done with extra information 
provided in story problems (Carpenter, Franke, 
and Levi 2003, p. 10).

Even if a few students in the class say that 
the answer is seven (“The equal sign means that 
both sides have the same value”), the rest of the 
class usually will not readily accept that point 
of view because they will not be aware that this 
is a valid use of the equal sign as established by 
convention. Once students convince themselves 
that the correct response to 8 + 4 = __ + 5 is 12, 
and they see the majority of the class confirming 
their reasoning, it will be difficult to dissuade 
them. Indeed, many students “may cling tena-
ciously to the conceptions they have formed 
about how the equal sign should be used”  
(Carpenter, Franke, and Levi 2003, p. 12). 

This instructional problem will be com-
pounded if the teacher, in trying to teach the 
relational meaning of the equal sign, says that 
“the equal sign does not mean that the answer 
comes next.” What then are the students to 
think? They know how they have used the equal 
sign countless times. Is the teacher asking them 
to discard their prior understanding? Resistance 
sets in.

Effectively introducing the relational mean-
ing of the equal sign requires a strategy, first, to 
avoid triggering the operational meaning of the 
equal sign and, second, to validate—or at least 
not invalidate—students’ prior experience with 
the operational sense of the equal sign.

Effectively introducing the 
relational equal sign
One effective approach for introducing the rela-
tional meaning of the equal sign is initially to 
teach students the concept of balance and only 
later relate that learning to the equal sign. This is 
the approach taken by Mann (2004), who clev-
erly has third-grade students use their bodies to 

a snippet from the program C++ shows the operational use 
of the equal sign in line 1 and its relational use in line 2.
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1.  x = (5 + 1) * (5 – 1) ; 

2.  if ( x == 24 ) 

3.   printf (‘Yes, 24’); 

4.  else printf (‘Not 24’);  

a six-year-old 
research-lab student  
used numbered  
cubes to represent 
5 + 2 = __ + 3 on  
a diagram of a  
balance scale.
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simulate a seesaw so that they can learn the con-
cept of balance. She places imaginary weights 
on one or both sides of each student, and the 
students move accordingly, thereby reflecting 
whether they are in balance. The students dem-
onstrate that they have learned how to maintain 
balance by adding or taking away the same 
weight from each side. Mann then places an 
equal sign on the board and asks students how 
this sign relates to what they have been doing. 
Students pick up the hint. For example, Sari 
responds, “If you have 3 oranges and 2 apples on 
one side of the equals sign, just like we had on 
the seesaw, and 3 oranges and 2 apples on the 
other side of the equals sign, you have the same 
on both sides” (p. 68). 

On their own, students are able to transfer 
the concept of balance to the equal sign. At this 
point, they are ready to consider such problems 
as 4 + 5 = __ + 3. If any student is stuck, he or she 

can be asked to visualize the given numbers as 
weights on the imaginary seesaw. Students also 
can be asked to make a drawing of the problem 
or to represent the problem concretely on a 
drawing of a balance scale (see fig. 2).

The sherman and Bisanz study (2009, p. 91) used nonsymbolic 
and symbolic representation of equivalence problems.
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5 + 2 = 4 +  ______

Symbolic Representation

½ ± µ ¾ ¢ 90° y½ ± µ ¾ ¢ 90° y
< - > ÷ x

¼ + = % 
< - > ÷ 

 (a+b) × 
½ ± µ ¾ 
¢ 90° y2 $ 
¼ + = % 
< - > ÷ x3

(a+b) × ½ 

¼ + = % < - > ÷ x¼ + = % < - > ÷ x3 (a+b) × ½ ± 
µ ¾ ¢ 90° y2 $ ¼ + = % < - > ÷ x $ ¼ + = % < - > ÷ x3

(a+b) × ½ ± µ ¾ ¢ 90° y(a+b) × ½ ± µ ¾ ¢ 90° y2 $ ¼ + = 
% < - > ÷ x3 (a+b) × ½ ± µ ¾ ¢  (a+b) × ½ ± µ ¾ ¢ 
90° y2 $ ¼ + = % < - > ÷ x $ ¼ + = % < - > ÷ x3 (a+b) 
× ½ ± µ ¾ ¢ 90° y× ½ ± µ ¾ ¢ 90° y2 $ ¼ + = % 
< - > ÷ x3 (a+b) × ½ ± µ ¾ ¢ 90°  (a+b) × ½ ± µ ¾ ¢ 90° 
y2 $ ¼ + = % < - > ÷ x $ ¼ + = % < - > ÷ x3 (a+b) × 

½ ± µ ¾ ¢ 90° y½ ± µ ¾ ¢ 90° y2 $ ¼ + = % < - > ÷ x3 (a+b) × ½ ± µ ¾ ¢ 90° y (a+b) × ½ ± µ ¾ ¢ 90° y2 $ ¼ + = % 
< - > ÷ x< - > ÷ x33 (a+b) × ½ ± µ ¾ ¢ 90° y (a+b) × ½ ± µ ¾ ¢ 90° y2 $ ¼ + = % < - > ÷ x $ ¼ + = % < - > ÷ x3 (a+b) × ½ ± µ ¾ 
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Research conducted by Sherman and Bisanz 
(2009) confi rms the value of fi rst nonsymboli-
cally introducing the concept of equality. The 
second graders in their study were able to apply 
what they had learned (about nonsymbolic 
equivalence in a twenty-minute lesson) to the 
equal sign symbolic notation one week later, 
even when no attempt was made to relate their 
prior learning to the equal sign. Figure 2 shows 
how Sherman and Bisanz represented nonsym-
bolic and symbolic equivalence. The results 
led these researchers to draw the following 
conclusion: 

Having children learn to reason about equiv-
alence problems in a nonsymbolic format 
would be a relatively easy, inexpensive inter-
vention that could have a positive impact on 
children’s ability to solve similar problems 
presented symbolically. (p. 97)

Maintaining the balance
Elementary school students must understand 
that the equal sign can be used to indicate 
equivalence between two expressions. If teach-
ers do not carefully think through their instruc-
tion, the students’ prior valid operational under-
standing of the equal sign will pose an obstacle 
to learning the relational meaning. 

By fi rst teaching the concept of equivalence 
nonsymbolically, using the balance model or 
using concrete objects, and only afterward 
relating that learning to the symbolic notation, 
we can provide young students with a successful 
introduction to the relational meaning of the 
equal sign.
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