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DISSERTATION ABSTRACT

The purpose of this qualitative study was to examine the
perceptions of high school graduates who experienced the
mathematics education materials from the Hands-On Equations
Learning System (Hands-On Equations) when the students were
in the sixth grade. The investigation also included the
perceptions about mathematics of students who did not
experience these manipulative materials.

The participants for this research had attended school and
graduated from high school in a small, public school district in
eastern Kansas. Of the 19 students who were interviewed, 10 had
experienced 21 lessons that involved Hands-On Equations when
they were in the sixth grade in January 1997. Ten of the students
were male and nine were female. The data consisted of the
interviews that were conducted with these students in 2005,
solutions to six one-variable linear equations completed by each
student, and GPA and ACT information for each student.

Students recalled positive reactions and valued the Hands-
On Equations experience. They recommended that other sixth-

grade students be taught algebra with these materials. The

i1



reasons for valuing the Hands-On Equations materials included
the access to foundational algebraic knowledge that helped
students when they got to their first algebra class, alignment
with visual or hands-on learning styles, and the promotion of
student interest in mathematics.

Several areas of comparison between the two groups of
students were analyzed. No obvious difference in present
mathematics self-efficacy between the students in the two groups
was discerned. Differences were noted when student attitudes
were examined. Hands-On Equations students favored
mathematics noticeably more than the non-Hands-On Equations
students did. The Hands-On Equations group had both a lower
mean GPA and lower mean ACT mathematics score, however the
students in the Hands-On Equations group solved the six one-
variable linear equations with more success (72% accuracy) than
did the non-Hands-On Equations group (59% accuracy).

The results from this study confirm the information from
other studies (Barclay, 1992; Busta, 1993; Leinenbach &
Raymond, 1996) that suggest that Hands-On Equations may help

middle level students learn algebra.
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CHAPTER 1

THE RESEARCH PROBLEM

Introduction

Algebra in the elementary school builds a foundation of
understanding for later "more-sophisticated work in algebra
in the middle grades and high school" (National Council of
Teachers of Mathematics [NCTM], 2000, p. 37).
Traditionally, students first enroll in algebra courses in
middle school or high school and bring little or no prior
knowledge of the topic. This abrupt transition is problematic
for many students (Greenes & Findell, 1999).

Algebra in the elementary school is a relatively new
reality. National mathematics standards now require the
inclusion of algebra in elementary classrooms. NCTM (2000)
revised the national mathematics standards for school
mathematics in the document Principles and Standards for
School Mathematics. These standards describe an emphasis on
algebra from prekindergarten through grade 12. Earlier national

recommendations for an algebra strand in elementary school also



exist (Educational Testing Service and the College Board, 1990;
NCTM, 1989, 1992).

Numerous states list algebra in the standards for
elementary grades. Frequently, states have followed the lead of
NCTM and have written state standards that align with the
national standards. For example, the Alaska standards (Alaska
Department of Education & Early Development, n.d.) include the
heading “Functions and Relationships” in the standards for
students aged 5-7. Students aged 8-10 study functions as well as
the patterns that were included for 5-7-year-olds. The Arizona
standards (Arizona Department of Education, 2003) are
organized by strands; Strand 3 is titled “Patterns, Algebra, and
Functions” and students in the lower grades focus on patterns,
functions with T-charts, finding the missing element in algebraic
representations, and the change in a variable over time. In the
state of Kansas, the mandate that teachers must teach and
students must learn algebra is especially strong since elementary
students are tested over algebraic understandings on the Kansas
Mathematics Assessments (Kansas State Department of
Education, 2001). These assessments are based on the Kansas
Curricular Standards for Mathematics (Kansas State Board of

Education, 2004).



Greenes and Findell (1999) asserted that a mechanism is
needed to give students early experiences with algebra. These
experiences should continue throughout all stages of their
mathematical development. Greenes and Findell stated that a
“. . .lack of experience has occurred despite the fact that several
professional groups have recommended that algebra be a
curricular strand in kindergarten through grade 8 mathematics

programs” (p. 127).

Hands-On Equations Learning System

The Hands-On Equations Learning System (hereinafter
referred to as Hands-On Equations) makes algebraic concepts
concrete and thus attainable for all in the third grade on up
(Borenson, 1994). Hands-On Equations is a set of instructional
materials that includes student and teacher manipulative
materials, three levels of teacher manuals that explain the 26
lessons, and worksheets for each lesson. The system "provides
concrete and invaluable experience in using the basic ideas
associated with algebraic linear equations" (Borenson, 1994, p.
23). Borenson (1994), the creator of these materials, claimed
that the system imparts important mathematical content,
promotes mathematical interest, and heightens student self-

esteem.



Statement of the Problem

The purpose of this study was to examine the perceptions

of high school graduates who experienced the mathematical

materials from Hands-On Equations when the students were in

the sixth grade. The investigation also included the perceptions

of students who did not experience Hands-On Equations during

their sixth-grade year. Four research questions were addressed.

l.

For the students who experienced Hands-On Equations,

what is the perceived value of these materials?

. Did the Hands-On Equations lessons create student

perceived differences in subsequent learning in algebra

classes for students taught with Hands-On Equations?

. Is there a difference in present mathematics self-

efficacy between students taught with Hands-On
Equations and those who did not experience these

teaching materials?

. Are there other differences related to (a) student

attitudes toward mathematics, (b) student achievement
in mathematics, and (c) student ability to solve simple
linear equations between students taught with Hands-

On Equations and students who were not?



Two groups of students who graduated from Baldwin High
School in 2003 were interviewed. Each member of both groups
of students was enrolled in the Baldwin USD 348 school district
from at least the 6" through the 12" grade. The first group
consisted of 10 students who were in a sixth-grade classroom in
which 21 lessons pertaining to Hands-On Equations were taught
in January 1997. The second group was composed of 10 students
who were in sixth-grade classrooms where Hands-On Equations
was not used. One of the non-Hands-On Equations students was
later omitted from the study when it was realized that she did not
meet the criteria of attending Baldwin schools from the 6" grade
through the 12'" grade. As a result, 19 interviews were included

in the data.

Rationale for the Study

Kansas and national standards now require that algebraic
concepts be taught to elementary school students (Kansas State
Board of Education, 2004; NCTM, 2000). The National Council
of Teachers of Mathematics (2000) stated, "All students should
learn algebra" (p.37). All students are defined as students in
prekindergarten through 12t grade (NCTM, 2000).

One reason for the inclusion of algebra in these standards

could be the fact reported by the National Research Council



(1989) that over 75% of all jobs require the use of algebra in
either a qualifying examination or in basic proficiency in order
to perform the job. Lawson (1990) and Carifio and Nasser (1994)
explained that algebra is the entry level skill in most technical
jobs, industry, sciences, and business. The National Research
Council (1989) also described a 50% attrition rate per year
among mathematics students from the ninth grade through the
Ph.D. level; this translates into half of the mathematics students
per year dropping out of mathematics classes.

Algebra as a mathematical topic in elementary school
looks different from the more formal algebra of middle school or
high school but involves the same basic understandings (NCTM,
2000). Principles and Standards for School Mathematics
(NCTM, 2000) stated common goals in algebra for all students
from prekindergarten through grade 12. They should know and
be able to understand patterns, relations, and functions;
represent and analyze mathematical situations using algebraic
symbols; use mathematical models; and analyze change.
Additional sets of expectations that are specific to each grade
band (prekindergarten-2, 3-5, 6-8, 9-12) delineated the

differences among grade levels.



Nationally, specific components of algebra are assigned to
various grade levels. Students in grades prekindergarten through
grade 2 should recognize patterns, sort and classify objects, and
use pictorial representations as a precursor to conventional
symbolic notations (NCTM, 2000). Students in grades 3 through
5 should make generalizations about geometric and numeric
patterns, represent a variable as an unknown with a letter or
symbol, and look at constant or varying rates of change.

At the state level, expectations also vary depending on the
grade level. For example, the Kansas Curricular Standards for
Mathematics (Kansas State Board of Education, 2004) expects
kindergarten children to look at patterns and to find unknown
sums and represent these sums with concrete objects and
pictures. First graders should state functional relationships in
either vertical or horizontal function tables for whole numbers 0
through 50. By fifth grade, students should be able to solve one-
step linear equations such as 3y=12. Students at this grade level
continue to express functions in tabular form but they deal with
numerical patterns in numbers as large as 5000.

While the degree of difficulty increases through the
grades, algebra as a strand is included in the curriculum

beginning with prekindergarten and builds a foundation for the



formal study of algebra in middle school or high school in both
state and national standards (Kansas State Board of Education,
2004; NCTM, 2000). Traditionally, students in a middle school
or high school Algebra I course have not previously encountered
the basic ideas of algebra before that first formal course; they
falter because they are expected to assimilate algebraic ideas and
skills in a very short time (Greenes & Findell, 1999; Von Rotz &
Burns, 2002).

Von Rotz and Burns (2002) gave examples where students
use abstract symbols without understanding. For example,
young children frequently misinterpret the meaning of the equal
sign. They often assume that this symbol acts as a sign that the
answer comes next. Thus children will write 7 for the box in a
problem such as 2 + 5 = [J + 4. The basic concept of equality is
misunderstood when children will accept 3 + 4 = 7 as correct but
reject 7= 3 + 4.

Hands-On Equations is a set of concrete materials
specifically designed to meet the algebraic needs of teachers and
students in the elementary grades. Fennema and Franke (1992)
asserted that concrete representations, as well as real-world
situations and pictorial representations, help students learn

abstract concepts in mathematics. Phi Delta Kappa supported



Hands-On Equations for years; for example, Phi Delta Kappa
(2000) promoted Hands-On Equations by advertising and
sponsoring 102 workshops during the spring of 2000. These
workshops were titled, “Making Algebra Child’s Play! The One-
Day Hands-On Equations Workshop.”

Even though Hands-On Equations has been in existence
since the early 1990s, a survey of the literature found minimal
research on Hands-On Equations. This absence of research
provided a rationale for the current study. The present
investigation could fill an obvious void in the literature, and
could provide information about the potential contribution of
Hands-On Equations as a tool to introduce beginning algebraic
concepts and to enhance student success in and attitudes toward

algebra.

Definition of Terms

For the purpose of this research study, the following
definitions will be used.

Attitude toward mathematics refers to characteristics
including “a liking or disliking of mathematics, a tendency to
engage in or avoid mathematical activities, a belief that one is
good or bad at mathematics, and a belief that mathematics is

useful or useless” (Neale, 1969, p. 632).



Hands-On Equations refers to the manipulative materials,
Hands-On Equations Learning System, developed and patented
by Henry Borenson (1994).

Middle School, Middle Level, and Junior High School are
terms that are used interchangeably to denote grades 6 through 8.

Self-efficacy is defined as the self assessment of one’s
capability to succeed to a certain level in specific subject areas
(Bandura, 1986).

Assumptions

It was assumed that students who attended school in
Baldwin from at least 6" grade through 12'" grade had similar
experiences except for academic tracking that might have
occurred. From 1997 until these students graduated from high
school in 2003, the various routes through a mathematical
curriculum were not specifically prescribed. Students were
required to take two year-long mathematics courses of their
choice. Students who were academically stronger typically took
Advanced Mathematics I their senior year; academically weaker
students who took Applied Math I and II could graduate from
high school without a formal algebra course (Baldwin High
School, 1998). It was assumed that the students with more

opportunities to learn algebra would be more successful in
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solving the six equations that were a component of the
interviews.

The researcher assumed that the students willingly
participated in this study. Another assumption was that the
students felt comfortable enough to answer questions honestly
and thoroughly. The researcher who conducted most of the
interviews knows many of the students who were interviewed
and assumed that these relationships would contribute to student
comfort levels. A second interviewer conducted three of the
interviews to avoid potential bias. It was assumed that there was
no effect on the data as a result of using two interviewers. An
additional assumption was that the students’ memories were at
least somewhat accurate. It was assumed that the students with

higher academic achievement records would remember more.

Limitations
This investigation involved students in one school district.
The study was conducted 8 years after the students first
experienced the Hands-On Equations lessons. Their subsequent
exposure to mathematics classes may or may not be typical of
other students who matriculate through junior and senior high
schools elsewhere. Consequently, the research results may not be

generalizable to students in other school districts.
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The researcher and the teacher of the 1997 Hands-On
Equations lessons are the same person. This fact introduced a
potential bias so that students may have told the researcher what
they thought the researcher wanted to hear during the interviews.

The Hands-On Equations lessons conducted in 1997 were
taught by a teacher licensed to teach mathematics at the
elementary school, junior high school, and high school levels
and who had attended a training day on Hands-On Equations.
Other teachers of these materials may or may not have an
interest in or understanding of the mathematical concepts
inherent in these materials. As a result, others attempting to
replicate these research findings may not be able to locate
teachers with the necessary mathematical background to
adequately teach Hands-On Equations.

Memory is another potential limitation. Since this study
was retrospective and asked students to recall reactions from
prior years in their academic careers, faulty memory may have

been a factor in the study.

Overview
This study is divided into five chapters with the first
chapter introducing the problem. A review of the related

literature is found in Chapter 2. Pertinent topics included there
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are the abstract nature of algebra, student achievement in
algebra, student difficulty with learning algebra, learning
theories and theorists, the value of manipulatives, Hands-On
Equations, memory and long-term remembering, self-efficacy
and mathematics, and attitude toward mathematics. Chapter 3
describes the qualitative research procedures that were
conducted during the study. Background information on an
informal study conducted with the sixth grade during 1997 is
also included. The chapter concludes with the results of a pilot
study. Chapter 4 includes the results of the analysis of the data
accumulated during the study. Chapter 5 presents a summary,
conclusions, and recommendations for practitioners and

researchers.
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CHAPTER 2

REVIEW OF THE LITERATURE

Introduction

This chapter contains a review of the literature pertaining
to topics that are relevant to this study. The review starts with a
discussion of the abstract nature of algebra. The review then
looks at student achievement in algebra and student difficulty
with learning algebra. The review of the research next considers
learning theories and the roles of concrete and abstract learning
including the relationship between concrete learning and the use
of manipulatives such as Hands-On Equations. The limited
research available on Hands-On Equations is addressed next.
Long-term remembering is also a factor and is considered.
Finally, the review looks at self-efficacy and attitude toward

mathematics.

The Abstract Nature of Algebra

The abstract, symbolic nature of algebra is apparent when

the various definitions of algebra are reviewed. The American

14



Heritage College Dictionary (Costello, 1993) defined algebra as
“a generalization of arithmetic in which symbols, usu. [usually]
letters, represent numbers or members of a set of numbers to
which the same operations apply” (p. 33). Carlyle and Moses (as
cited in Tierney & Nemirovsky, 1997, p. 336) said, "Algebraic
thinking encourages examination or conceptualization of number
relationships in general. It is a way of going from specific
thinking to general cases." MacGregor and Stacey (1999) stated,
“Algebra is that part of mathematical language that has been
designed to express general relationships among numbers” (p.
85).

NCTM's (2000) Standard 2: Algebra is delineated by four
components describing what students should know and be able to
do in regards to algebra. Teachers should teach so that students
will

e understand patterns, relations, and functions;

e represent and analyze mathematical situations and
structures using algebraic symbols;

e use mathematical models to represent and
understand quantitative relationships;

e analyze change in various contexts. (p. 37)

15



Esty (1999) offered distinctions between arithmetic and
algebra. With arithmetic, one can go directly to the solution of a
problem. With algebra, a problem is represented by symbols that
one must manipulate, thus indirectly finding the solution.
Algebraic notation is needed when “the problem is indirect”

(p- 141). An example he offered exemplified his point. Esty’s
accompanying diagram showed a marked side which was one of
three sides and was perpendicular to the barn wall.

Problem 1: A farmer builds a rectangular dog

kennel along the side of her barn, so she uses only

three sides worth of fencing and gates. If she uses

40 feet of fencing and gates, with the marked side

projecting 7 feet from the barn, what is the area of

the kennel?

Problem 2: A farmer builds a rectangular dog

kennel along the side of her barn, so she uses only

three sides worth of fencing and gates. If she uses

40 feet of fencing and gates and the area is 170

square feet, how long is the marked side? (p. 141)

In the first problem, one can simply do the calculations,
40—-7-7=26, in order to find the length of the dog kennel. The

length of 26 feet times the width of 7 feet equals an area of 182

16



square feet; algebra is not required to solve this area problem.
In the second problem, there is nothing to calculate at first.
Algebra is needed to create a formula, 170 = x(40-2x), that can
then be solved to determine the length of the marked side. Esty
emphasized that "algebraic thinking is characterized by its focus
on operations and order, as opposed to an emphasis on numbers"
(p-144). He asserted that the realities of algebra are operations,
order, and relations.

In going from the specific to the general, formulas are
often derived. Herbert and Brown (1997) explained how children
as young as sixth grade can recognize the power of an algebraic
formula. They shared one student's comments after working on
the "Crossing the River" problem. Students were to find out how
many one-way trips across a river it would take to move eight
adults and two children across a river in a boat that could hold
either one adult, or one child, or two children, if each of them
could row the boat. Students were urged to follow three phases:
pattern seeking, pattern recognition, and generalization. After
generalizing, one student said, "I think we try to find formulas
so it will be easier to get the problems done. Formulas make

problems easy to solve. It's very helpful" (p.343).

17



Saul (2001) quoted Sir Isaac Newton as an authority on the
definition of algebra. Newton explained that algebra is a
generalization of arithmetic, or the arithmeticae universalis;

13

. .whereas arithmetic treats questions in a definite, particular

2

way, algebra does so in an indefinite universal manner. . .

(p. 38).

Student Achievement in Algebra
NAEP Results

Kenney and Silver (1997), as co-director and director of
the National Assessment of Educational Progress (NAEP)
Interpretive Reports Project, probed the foundations of algebra
by examining fourth-grade students’ responses on the 1992
NAEP. Approximately 10% of the fourth-grade items assessed
algebraic thinking. “Algebraic thinking” involved patterns of
figures, symbols, or numbers. Both multiple-choice and
constructed-response items were included. Kenney and Silver’s
qualitative examination of 250 student responses revealed that
the NAEP assessed important, informal algebraic concepts
related to patterns and relationships. The NAEP data also
revealed these students’ ability to work “with patterns of
numbers, where the relationship between the numbers was

explicitly presented or implicitly defined” (p. 274).
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Specifically, Kenney and Silver (1997) found that fourth
graders could reason with simple patterns but had more trouble
with complex patterns and explaining their mathematical
reasoning about patterns. For example, a simple problem
involving repeated figures that asked the student to determine
the next figure was correctly answered by almost all fourth-
grade students. In contrast, student responses to the “Extend
Pattern” question, which required students to determine if 375
would appear in the sequence generated by multiplying by 2s,
showed that while over 75% of the students chose the correct
answer, only about 25% wrote a mathematically valid reason to
explain the answer. Student problems continued when they were
asked to determine a pattern of “decreasing increases” (p. 270).
Explicitly stated patterns or patterns that increased by a constant
appeared to be easier for fourth-grade students than those
patterns with non-constant differences. Another example offered
by Kenney and Silver revealed that students confused the role of
the input and output columns in a table. Also, while students
could sometimes decipher the pattern, they could not
consistently apply it to a new situation. Kenney and Silver
suggested that more explicit attention to patterns is needed in

elementary school classroom teaching. They claimed that much
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more practice with these types of patterns could enhance student
achievement on future NAEP tests.

In looking more closely at the NAEP algebra and functions
question data for fourth-grade students from The Nation’s Report
Card (National Center for Education Statistics, n.d.), it is
apparent that a majority of the students in years 1990, 1992,
1996, or 2003 correctly answered five out of seven of the
procedural knowledge questions for which data was reported. In
contrast, a majority of these students correctly answered only
two out of seven of the conceptual-understanding questions and
only four out of eight of the problem-solving questions. This set
of data confirms the pattern for American students of performing
well on computational tasks but not achieving as well on
questions dealing with deeper mathematical understanding
(Kilpatrick, Swafford, & Findell, 2001).

Kansas State Assessment Results

The Kansas State Department of Education (Kansas State
Department of Education, n.d.) organizes its mathematics
standards hierarchically by benchmarks and indicators that are
denoted as either knowledge or application indicators. The
numbering system on the retrieved reports indicates these

categories. For example, K2.4.1 is the label for Knowledge
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Indicator I in Standard 2 under Benchmark 4. An application
indicator example is A2.3.1 which denotes Application Indicator
I in Standard 2 under Benchmark 3. (While the retrieved reports
followed this labeling system, the current standards use a pattern
that inserts the "K" or "A" next to the indicator it describes, for
example 2.4.K1 or 2.3.A1.) The knowledge and application
indicators for Standard 2 Algebra specify algebraic achievement
objectives.

By comparing the scores (Center for Educational Testing
and Evaluation, n.d.a; Center for Educational Testing and
Evaluation, n.d.b) of Kansas fourth-grade students who took the
state assessment in mathematics in spring 2000 and in spring
2005, one can determine if Kansas algebra scores have improved
or not during this 5-year period. Utilizing the six algebra
indicators, K2.1.1, K2.3.3, K2.4.1, A2.1.2, A2.2.2, and A2.3.1,
the state means for 2000 were 74.5, 48.9, 53.5, 57.7, 52.3, 51.2,
respectively. The matching state algebra means for 2005 were
77.6, 72.7, 71.4, 70.2, 53.9, and 52.8. These data indicate an
improvement in algebraic achievement for Kansas fourth graders

from 2000 to 2005.
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TIMSS Results

The Third International Mathematics and Science Study
(TIMSS) was “the first large-scale international study
integrating information on curriculum and teaching ever
attempted” (U.S. National Research Center, 1996). This study
was conducted in 1994-1995 at five grade levels in more than 40
countries (International Study Center, 2005). The U.S. National
Research Center (1996) explained that this study focused on
children aged “9, 13, and those in the last year of high school.
In the U.S., these are 4“’-, 8- and 12th-graders.” TIMSS was
based on the premise that curriculum and teaching methods are
factors in what students learn (U.S. National Research Center,
1996).

The TIMSS results revealed two false assumptions: the
content of mathematics does not vary across countries and the
content follows a fixed sequence (U.S. National Research
Center, 1996). Those assumptions were disproved when it was
found that mathematics subjects in all countries are not universal
and that the various curriculums did not follow an expected
sequence. Also, the degree of attention and the type of focus
varied as did the types of skills that students were expected to

demonstrate.
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One of the key findings about curriculum was that United
States standards are “unfocused and aimed at the lowest common
denominator. In other words, they are a mile wide and an inch
deep” (U.S. National Research Center, 1996). Another finding
was the fragmented curriculum that is the result of the
decentralized approach to education in the United States. Other
countries achieved better because of their coherent goals and
universal teaching practices. United States students in the eighth
grade study arithmetic, fractions, and a small amount of algebra
in contrast to both Japan and Germany whose students receive
thorough exposure to both algebra and geometry. These findings
help to explain the achievement results that TIMSS reported.

The TIMSS fourth- and eighth-grade tests dealt with
algebra; the fourth-grade test had a subtest related to algebra
called “patterns, relations and functions” and the eighth-grade
test was a “full-scale algebra subtest” (U.S. National Research
Center, 1997, figure 6). The average percent correct was
reported for each of the TIMSS countries (U.S. National
Research Center, 1997). The United States was in the middle tier
for both fourth- and eighth-grade results which meant that those
scores were not significantly different from the mean. Fourth

graders scored 66% correct; a 73% was significantly above the
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mean and scores of 60% and below were significantly below the
mean. Eighth graders scored 51% correct; a 59% was
significantly above the mean and scores of 46% and below were

significantly below the mean.

Student Difficulty with Learning Algebra

Two areas that impact student learning are the content and
the students (Kieran, 1992; Kilpatrick, Swafford, & Findell,
2001). Kieran applied these categories specifically to algebra
whereas Kilpatrick et al. referred to mathematics in general.
“The effectiveness of mathematics teaching and learning is a
function of teachers’ knowledge and use of mathematical
content, of teachers’ attention to and work with students, and of
students’ engagement in and use of mathematical tasks”
(Kilpatrick et al., 2001, pp.8-9). The editors of Adding It Up:
Helping Children Learn Mathematics (Kilpatrick et al., 2001),
included these same two areas—the content and the students—in
the elements that impact student mathematical proficiency.
Content

Various authors make the case that the content of algebra
is inherently difficult. Hatfield, Edwards, Bitter, and Morrow
(2005) stated, “What makes algebra seem difficult to some

people is that algebra is really two things at once” (p. 410).
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They claimed it is both a language and an abstract system with
specific rules. Usiskin (1996) explained that mathematics is a
symbolic language with the symbols of mathematics forming the
written language of mathematics. Esty (1999) wrote an entire
textbook and course titled The Language of Mathematics; he
capitalized Mathematics to emphasize its similarity to other
foreign languages.

Esty (1999) explained that Mathematics, like other
languages, “has its own vocabulary, grammar (classes of words
and rules of arranging them), syntax (rules of word order),
synonyms, negations, conventions, abbreviations, sentence
structure, and paragraph structure” (p.1). He suggested that
students have problems trying to learn this language without
having it taught explicitly. Kieran (1989) observed that “this
particular aspect of algebra appears to be one that never really
does get sorted out by most students throughout their entire high
school algebra career” (p.39). Esty (1992) explicitly teaches the
language of Mathematics and claimed that the language aspects
are essential to the understanding of algebra as well as other
areas of mathematics. One of the confusing aspects of this

language is the fact that the same symbols are employed to mean
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different things (Esty, 1992). An example and explanation that
Esty offered is:

Mathematics uses the same symbols (“x” and “=") to

discuss numbers that it uses to discuss arithmetic

operations.

e “3(x+4)=230" gives information about x, an unknown
number.

o “3(x +4) =3x + 12” uses the same symbols but gives no
information about x; its content is about an entirely
different kind of mathematical object, a sequence of
operations (function). It says “Add 4 and then multiply
by 3” is equivalent to “Multiply by 3 and then add 12.”

e “3(a+4)=3a+ 12” uses a different letter but says the
same thing!

This helps explain why Mathematics is difficult. (Esty,

2000, p.1)

Usiskin (1992) stated that algebra is a language that has
symbols that stand for both elements and operations on those
elements. Usiskin added that as a language, three facts about
language apply to algebra:

e It is best learned in context.

e Almost any human being can learn it.
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e It is more easily learned when one is younger. (p. 27)

Kieran (1992) extensively studied the difficulties of going
from arithmetic to algebra. Her explanation of the dichotomy of
algebra involves two terms, procedural and structural. The first
of Esty’s examples, 3(x + 4) = 30, could be labeled procedural
by Kieran’s definition because it involves “arithmetic operations
carried out on numbers to yield numbers” (p. 392). The
expression 3(x + 4) is indeed a number that is equivalent to 30 in
Esty’s first example. Kieran explained that the term structural
“refers to a different set of operations that are carried out, not
on numbers, but on algebraic expressions” (p. 392). The latter
two of Esty’s examples, 3(x + 4) = 3x + 12 and
3(a +4)=3a + 12, could be labeled structural because they refer
to sets of operations carried out on algebraic expressions.

Kieran’s (1992) analysis of the research related to the
learning of algebra supported her overall conclusion that the
“majority of students do not acquire any real sense of the
structural aspects of algebra” (p. 412). She added that as of her
1992 writing, few, if any, textbooks at that time explicitly dealt
with helping students make the transition from the procedural to

the structural aspects of algebra.
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Bruner (1960) wrote about the importance of learning the
structure of a subject. “Grasping the structure of a subject is
understanding it in a way that permits many other things to be
related to it meaningfully” (p. 7). He used an algebra example to
make his point. Bruner said that once a student grasps the
fundamental ideas of equation solving, he or she can recognize
that new equations are “not new at all, but only variants on a
familiar theme” (p. 8). Hohn (1995) summarized Wertheimer’s
position that students must be assisted to see the structure of
problems in order to apply their learning to new situations.

Rittle-Johnson and Alibali (1999) researched the
relationship between conceptual and procedural knowledge.
Their findings suggested that by fourth grade, most elementary
students understand what it means for two quantities to be equal.
The issue is the students’ lack of comprehension of the meaning
of the equal sign or the structure of equations. Children do not
extract the full meaning of the equal sign even after multiple
uses. “Indeed, without a prior understanding of equivalence,
algebraic equation-solving procedures may not make sense”
(p-187) and may lead to difficulties in algebraic equation-

solving. “Their incomplete understanding of the meaning and
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role of the equal sign may be one source of these difficulties”
(p-187).

A question that the research of Rittle-Johnson and Alibali
(1999) directly addressed was which type of knowledge,
procedural or conceptual, should be taught first. They examined
fourth and fifth graders’ performance with problems of the form
a+ b+ c=_+c. They found that conceptually oriented
instruction produced gains in both conceptual and procedural
knowledge; procedurally oriented instruction also produced
gains in both types of knowledge with smaller gains in
conceptual knowledge. The results indicated that conceptual
instruction should precede procedural instruction.

Students

In Adding It Up: Helping Children Learn Mathematics
(Kilpatrick et al., 2001), the editors shared the Mathematics
Learning Study Committee’s findings. They confirmed that
many students have difficulty in making the transition from
“school arithmetic to school algebra—with its symbolism,
equation solving, and emphasis on relationships among
quantities” (p. 8). Rubenstein and Thompson (2001) summed up
student problems based on the inherent nature of algebra. “The

symbolic language of mathematics often challenges our students.
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We sometimes forget that the words, phrases, and symbols that
are meaningful to us are unfamiliar to students” (p. 265). They
asserted that students who do not master the standard symbolism
of mathematics will be hindered at some point in their
mathematical careers (Rubenstein & Thompson, 2001).

Research shows that many students do not understand the
foundational idea of equality (Kieran, 1992; Siegler, 1998).
Faulkner, Levi, and Carpenter (1999) described an activity where
teachers of first- through sixth-grade students asked their
students to complete the equation: 8 + 4 = + 5. Fewer than
10% of their students answered correctly. A majority of the
incorrect answers were 12 with some students answering with
17. Kilpatrick et al. (2001) said that these students exemplify
many if not most elementary students who have decided that the
equals sign is the signal to supply an answer, that is, to calculate
with the numbers that precede the equals sign. "Children can
develop this impression because that is how the notation is often
described in the elementary school curriculum and most of their
practice exercises fit that pattern” (Kilpatrick et al., p. 379).
Thus, students do not understand the symbol as an indicator of
equality (Behr, Erlwanger, & Nichols, 1976; Erlwanger &

Berlanger, 1983; Kieran, 1981; Saenz-Ludlow & Walgamuth,
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1998). In addition, teachers often fail to realize the degree of
their students’ misunderstanding of the equality concept
(Faulkner et al., 1999).

Carraher, Schliemann, Brizuela, and Earnest ( 2006)
asserted that empirical studies delineating success with algebra
for young students negate the argument that young children are
developmentally incapable of comprehending algebraic ideas. A
master’s thesis written in Spanish by Lins Lessa in 1995 is one
study that Carraher et al. cited. Lins Lessa found that 11- to 12-
year-olds could use a balance scale to solve problems such as x +
y+ 70 =2x +y + 20. After citing numerous studies including
their own research, Carraher et al. concluded that students’
difficulties with algebra may more closely relate to the “limited
ways that they were taught about arithmetic and elementary
mathematics” (p. 92) rather than a developmental inability.
Brizuela and Schliemann (2003) described classroom data that
showed that, “if children are given the opportunity to discuss
algebraic relations and to develop algebra notations, even fourth
graders will be able to solve algebra equations™ (p. 1).

A lack of opportunity to learn algebra may be a real issue
for students. The NAEP data bank revealed how often fourth-

grade teachers addressed algebra and functions (National Center
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for Education Statistics, n.d.). The self-reported results
indicated that 8% spent “a lot” of time, 31% spent “some” time,
41% spent “a little” time, and 20% answered “none” in response
to this question. This data showed that 61% of the fourth-grade
teachers spent little or no time on algebra and functions.

Another aspect of the lack of opportunity for students
involves exposure to appropriate teaching. The TIMSS study
provided insights on eighth-grade mathematics teaching in the
United States with its 1995 video study component (Stigler,
Gonzales, Kawanaka, Knoll, & Serrano, 1999). While the reform
movement in mathematics education was predominant during the
1990s with mathematics educators, what the TIMSS video study
revealed was that this reform movement had not materialized in
eighth-grade classrooms across America; teachers were still
utilizing traditional teaching methods that did not emphasize
high-level thinking and understanding. Twenty years after the
studies done in the 1970s, teaching had changed little in
American classrooms.

Commenting about the TIMSS results, Lane (1996) stated
that United States mathematics teachers rarely have time to teach
any subject in depth because they are expected to teach such a

wide range of subjects. Also, United States teachers spend more
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time in the classroom which results in less time to plan lessons.
Teacher and public expectations were also noted; other nations
contrast with the United States because the United States expects
all students to achieve a quality mathematics education rather
than an elite few.

Textbooks and the curriculum they relay make a difference
in student learning (Schmidt, 1996). The Third International
Mathematics and Science Study (TIMSS) reinforced this point.

Our [United States] unfocused curricula and textbooks fail

to define clearly what is intended to be taught. They

influence teachers to implement fragmented learning goals
in their classrooms. They emphasize familiarity with many
topics rather than concentrated attention to a few. Our

curricula, textbooks, and teaching are all a “mile wide and

an inch deep.” (] 5)

Superficial understanding by students may lead to
incorrect extensions of correct rules as students try to make
sense of algebra (Siegler, 2003). An example is the incorrect
application of the distributive principle. Some students
inaccurately concluded that the distributive property that allows
a-(b+c)=(a-b)+(a-c) would lead to a+(b-c)=(a+b)-(a+c)

(Siegler, 1998). Siegler (1998) noted that a lack of
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understanding of algebra leads capable and competent students
to view algebra as "exercises in symbol manipulation, without
any connection to real-world contexts" (p. 296). Mayer (1999)
warned that procedural knowledge that is isolated from
conceptual knowledge results in mathematics that becomes a set

of meaningless procedures for students.

Learning Theories and Theorists

Educational psychology is a science that is a branch of
psychology that investigates both the instructor's manipulation
of the environment and changes in the learner as a result of that
environment (Mayer, 1999). "As a discipline, educational
psychology is poised between teaching and learning (i.e.,
between the instructional manipulations provided by the teacher
and the changes in knowledge and behavior created in the
learner)" (p. 5). Mayer explained that the definition of
educational psychology raises the question of what is learned—
behavioral change or a cognitive change—and leads to the
"classic tension between behaviorist and cognitive approaches to
learning" (p. 5).
Behaviorism versus Cognitivism

Behaviorism involves determining the relationship

between two factors, instructional manipulations and outcome
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performance; both are externally observable events
(Mayer,1999). The phrase "instructional manipulations" refers to
the stimulus and "outcome performance" refers to the response
to that stimulus. With behaviorism, "the goal of educational
psychology is to determine how instructional manipulations
affect changes in behavior" (p. 7).

A cognitive approach involves the relationship between
external factors (the stimulus and response) and internal factors
such as learning processes and existing learner characteristics
(Mayer, 1999). Thus a main interest of cognitive psychologists
is to discover the internal cognitive processes and states that
allow understanding of the relationship between instructional
manipulations and outcome performances.

Key Ideas About Behaviorism

Behaviorism had its roots in the early 1900s with the
work of John B.Watson (1925). Watson was interested in having
psychology focus more on observable behavior to the exclusion
of consciousness. He was influenced by Ivan Pavlov, the
Russian physiologist who studied the responses of dogs to the
ringing of bells and other actions in association with food.
Watson believed that human learning could be totally controlled

through a conditioning process that was similar to that used by
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Pavlov. Hohn (1995) gave an education-related application of
this conditioning process: The use of flash cards when teaching
children math facts or vocabulary words is an example.

Hohn (1995) credited Thorndike with the first theory of
learning because his theory was based on organized research.
Thorndike conducted numerous systematic experiments with
animals and their learning of relatively simple tasks. While he
recognized that human learning is more complex than animal
learning, Thorndike believed that humans learn in much the same
way as animals do. His work gave behaviorism its scientific
basis. Hohn indicated that Thorndike’s “lasting legacy” (p. 23)
is the practice of using research to guide educational practice.
Key Ideas About Constructivism

Lemlech (2002) explained, “Constructivist learning theory
is an approach to teaching and learning which acknowledges that
information can be transmitted but understanding must be
constructed”(p. 130). While von Glasersfeld (1995) is
recognized as a leader in this movement, he credited Piaget and
others who came much earlier with the genesis of these ideas.
Von Glasersfeld clearly stated that constructivist thought is in

opposition to the behaviorism that was popular in the twentieth
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century. Von Glasersfeld defined constructivism in his opening
chapter.

What is radical constructivism? It is an unconventional

approach to the problems of knowledge and knowing. It

starts from the assumption that knowledge, no matter how
it be defined, is in the heads of persons, and that the
thinking subject has no alternative but to construct what
he or she knows on the basis of his or her own experience.

(p. 1)

Eisner (1999) recognized the emergence of constructivism
in the education community’s view of human nature. “We have
come to realize that meaning matters and that it is not something
that can be imparted from teacher to student. Meanings are not
given, they are made” (p. 658). Flavell (1992) admitted that
developmentalists are in agreement that children are constructive
thinkers and learners. Battista (1999) claimed that
constructivism had become the “dominant theoretical position
among mathematics education researchers” (p. 432). He
explained that the research showed that constructivism is based
on tested theory.

Von Glasersfeld (1995) shared his radical constructivism

at the Eleventh International Conference on the Psychology of
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Mathematics Education in Montreal in 1983 and received the
attention of the intellectual community. The two basic principles
of his model are:
e Knowledge is not passively received but built up by the
cognizing subject;
e The function of cognition is adaptive and serves the

organization of the experiential world, not the discovery

of ontological reality. (p. 18)
Von Glasersfeld explained that concepts must be built up by the
individual; the concepts are not inherent in things. Physical
materials are useful but only because they provide opportunities
to reflect and abstract. "Reflective abstraction is not a matter of
looking closely but of operating mentally in a way that happens
to be compatible with the perceptual material at hand" (p. 184).
He used Cuisenaire rods as an example, explaining that the rods
are not evident manifestations of concepts but are the objects
that may direct the attention of the learner and invite
construction of mathematical concepts. While the materials
"cannot determine the students' conceptual constructing, it can
set up constraints that orient them in a particular direction"
(p. 184). He emphasized that students often make abstractions

that differ from the ones that appear obvious to the teacher. This
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is because the student is the one who creates, or constructs, the
knowledge. Thus the materials may be conducive to the desired
understanding but they are "merely occasions, not causes"
(p-185).
Related Components from Piaget and the Concept of
Developmental Stages

Constructivist thought is influenced by the work of
Piaget. Piaget’s developmental learning stages have been
referenced repeatedly, for example, by Flavell (1992) and
Siegler (1998). Hohn (1995) listed these stages as sensorimotor
(birth to 2 years), preoperational (2-7 years), concrete
operational (7-11 or 12 years), and formal operational (12-14
years to adulthood). Hohn explained that in the concrete
operational stage, “the child can manipulate concrete events and
can solve problems using them. Game rules are followed” (p.
68). Hohn included 12-year-olds in his description of the formal
operational stage.

The child can deal with hypothetical situations. . .

Higher-order operations emerge in which abstract rules are

used to solve problems. For example, algebra rather than

a trial-and-error procedure is used to solve the problem:
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"What number, if multiplied by 3 and reduced by 4, equals

20?" (p. 68)

Flavell (1992) questioned the Piagetian general stages
stance that implies that the child has a characteristic mental
structure that is applied to all content areas. Flavell countered
by stating that contemporary developmentalists believe that
cognitive development is more balanced with both general
stagelike attributes and specific properties that relate to
particular content areas. He explained that a child may function
at a higher level in one content area than in another because of
expertise acquired through extensive practice and experience.

While recognizing the contributions of Piaget, Siegler
(1998) questioned the idea of explicit developmental stages.
After explaining findings that demonstrated cognitive abilities in
children younger than would be expected with Piaget's theory
and findings that showed illogical thinking in adults, Siegler
asserted that development generally is an incremental process
that happens gradually over many years. He claimed that it is
"increasingly indefensible. . .to state a single age at which
children acquire a particular concept" (p. 331). Siegler also
recognized the impact of existing knowledge on a student's

ability to learn new information; "prior content knowledge
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influences what people learn as well as how much they learn"
(p. 333).

Piaget believed that schemata are the cognitive or mental
structures by which individuals adapt to and organize the
environment (Wadsworth, 1984). Schemata never stop changing
or becoming more refined. The child continually tries to make
sense of his/her environment; he/she is continually constructing
meaning. Assimilation is the cognitive process by which an
individual integrates new knowledge into existing schemata. If a
new stimulus cannot be assimilated, accommodation takes place.
Accommodation involves either creating a new schema or
modifying an existing schema. “Equilibrium is a state of balance
between assimilation and accommodation. Disequilibrium is a
state of imbalance between assimiliation and accommodation”
(p- 17). In Piaget’s theory, disequilibrium is the motivator that
activates intellectual development.

Related Components from Bruner

Bruner’s work represents one of the cognitive approaches
to learning (Hohn, 1995). Hohn stated that “Bruner was
responsible for the idea that learning is most meaningful to
learners when they have the opportunity to discover

relationships among concepts on their own” (p. 187).
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A key point made by Bruner in his 1960 book, The Process
of Education, is that early learning can make later learning more
powerful and precise. He began with “the hypothesis that any
subject can be taught effectively in some intellectually honest
form to any child at any stage of development” (p. 33). Bruner
drew on Piaget’s work with the stages of cognitive development
to explain this ability to teach supposedly difficult concepts at
an early age. Bruner focused on Piaget’s concrete operational
stage because this is the age for in-school learning. Bruner
explained that an operation is a type of action that can be done
by manipulating objects. According to Piaget’s theory, children
are not capable of dealing with abstract knowledge until they
pass into the formal operation stage, between the ages of 10 and
14 (Bruner, 1960). “Later, at the appropriate stage of
development and given a certain amount of practice in concrete
operations, the time would be ripe for introducing them
[students] to the necessary formalism” (Bruner, 1960, p. 38). In
his introduction, Anglin (Bruner, 1973) summarized two of
Bruner’s contributions on instruction: The learner should be
encouraged to be an active participant in the learning process
and “curricula should be tailored to the learner’s existing mode

of representation” (p. xvi).
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Bruner (1960) asserted that the transfer of learning is at
the heart of the educational process. Transfer is what allows
current learning to impact future applications. He explained that
transfer is “dependent upon mastery of the structure of the
subject matter” (p. 18). Mastering the important ideas of a field
also involves the development of an inquiring attitude toward
solving problems on one’s own. Bruner said, “To instill such
attitudes by teaching requires something more than the mere
presentation of fundamental ideas” (p. 20). Bruner conjectured
that the appropriate attitudes would be developed through the
“excitement about discovery” (p. 20). Thirteen years later,
Bruner (1973) concluded that discovery aids in memory
retrieval, “In sum, the very attitudes and activities that
characterize figuring out or discovering things for oneself also
seem to have the effect of making material more readily
accessible in memory” (p. 412).

Unified Theory

An “emerging unified theory of educationally relevant
learning” (Hohn, 1995, p. 402) combines both behavioral and
cognitive approaches to learning. This integration of theories,
when applied, results in educational practices which employ both

cognitive and behavioral components. Thus, teaching techniques
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which utilize “the best of what each position has to offer”
include both “reinforcement of new behavior and the learner’s
own ability to process what is being presented” (Hohn, p. 403).

Goldin and Shteingold (2001) compared the behaviorist
and constructivist perspectives in the context of mathematical
representations. They pointed out the clash of these two
differing philosophies in the public schools. Some educators
“favor basic mathematical skills, correct answers through correct
reasoning, individual drill and practice, more direct models of
instruction, and measures of achievement through objective
tests” (p.7). By comparison, they characterized the
constructivist school of thought as including, among other items,
children “making their own discoveries in mathematics, . . ., less
use of teacher-centered models of instruction,. . . [and] group as
well as individual problem-solving activity” (p.7). Goldin and
Shteingold suggested the use of both schools of thought with an
“inclusive educational philosophy—one that values skills and
correct answers as well as complex problem solving and
mathematical discovery, without seeing these as contradictory”
(p-8).

Related Issues in Learning Mathematics
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"Research on children's thinking has focused increasingly
on the specific processes involved in learning" (Siegler, 1998, p.
284). The results of this research indicate that children either
retrieve solutions from memory or revert to more time-
consuming alternative strategies. Siegler compared his theory to
the evolutionary aspect of biology; a better strategy eventually
takes over and becomes the preferred strategy when solving
mathematical problems. For example, young children solve the
single-digit arithmetic problem of 3 + 6 with a variety of
strategies including retrieval, counting on, counting on their
fingers from one, or using related problems. With experience,
children's strategies change; retrieval is the strategy that is
increasingly utilized.

Retrieval is widely accepted as the dominant arithmetic
strategy of adults (Resnick, 1989). Children with normal
development move gradually toward the retrieval strategy
between 7 and 11 or 12 years of age. Retrieval and other more
sophisticated strategies are quicker and more accurate. Children
tend to employ "the fastest approach that they can execute
accurately" (p. 287). Accurately responding to problems
reinforces the likelihood of producing the same correct answer in

future instances.
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Pushing children to use strategies which they are not ready
to choose may retard learning (Siegler, 1998). An example
Siegler described was forcing children to abandon counting on
their fingers before they feel confident of their answers and have
repeatedly reinforced the correct answers. "As is often the case,
the most direct method for pursuing an instructional goal is not
necessarily the most effective one" (p. 290).

Problems in learning mathematics have been attributed to
a "combination of limited background knowledge, limited
processing capacity, and limited conceptual understanding"
(Siegler, 1998, p. 292). An example of limited conceptual
understanding that Siegler offered dealt with the inversion
principle which is the idea that adding and subtracting the same
quantity to a number leaves the original number unchanged.
Problems of the form a+b-b=? (e.g., 6+9-9=7) would be
easily solved by a person who understands the inversion
principle and the aligned fact that +b—-56=0.

The superficial understanding of algebra by students who
do well in algebra classes because they treat "the equations as
exercises in symbol manipulation, without any connection to
real-world contexts" (Siegler, 1998, p. 296) leads to

misunderstanding. Some students make incorrect extensions of
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correct rules and may generalize the distributive principle that
indicates a-(b+c)=(a-b)+(a-c) and conclude that
a+(b-c)=(a+b)-(a+c).

Resnick (1989) asserted that children from families most
alienated from schooling more often treat school mathematics as
symbol manipulation. This is because these students are less
likely to trust their own informal mathematics ideas since they
do not have access to the more highly developed mathematical
background knowledge that the mainstream culture provides to
its children. Based on this assertion, "a general approach to
school mathematics instruction that stressed concepts and
explicitly engaged children's informally developed knowledge
might be expected to yield particular benefits for minority
children and perhaps for girls as well" (p.168).

Mayer (1999) cited studies that supported the idea that
skills needed to solve mathematics problems can be taught thus
enhancing the probability of a student's success regardless of his
or her age. The answer to the question, "What does a student
need to know to solve mathematics problems?" (p. 157) included
four components. Students need linguistic and factual knowledge
to translate the sentences of the problem, schematic knowledge

in order to integrate the information into a coherent whole,
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strategic knowledge to devise a plan, and procedural knowledge
to carry out the computations needed by the plan. An example
where students learned these skills is the study where pre-
algebra middle-school students experienced a 20-day program
that emphasized daily opportunities to translate among relational
sentences, tables, graphs, and equations. The students who
participated in the program showed much improvement in
comprehending and solving word problems as compared to the
students in the control group. Another example involved first
graders who were having difficulty with simple addition. In this
case, training which emphasized the central conceptual structure
of the number line enhanced the procedural knowledge for
addition; the trained first graders exceeded by far the
achievement of the control group of first graders. Mayer
explained, "The learning of basic arithmetic procedures must be
tied to the development of central conceptual structures in the
child" (p. 200). The number-line training was a demonstration
of the importance of helping students make the connection

between procedures and concepts.

The Value of Manipulatives
Manipulative materials have been defined as “objects that

appeal to several senses and that can be touched, moved about,
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rearranged, and otherwise handled by children” (Kennedy, 1986,
p. 6). These objects can include materials such as balances
which are specifically designed to address mathematical
concepts, or environmental items such as measuring instruments
and money. Kennedy explained that manipulatives became a
focus of interest when student understanding, or meaning theory,
surpassed the stimulus-response theories of the nineteenth and
early twentieth centuries.

Hartshorn and Boren (1990) reviewed the research on
using mathematical manipulatives for ERIC Digest. They found
that manipulatives were useful in helping children move from
the concrete level to the abstract level. A crucial component is
the transition stage between these two levels. Teachers must
carefully structure the use of the connecting or pictorial
intermediate stage in order for students to make the connection.

Witzel, Smith, and Brownell (2001) advocated the use of
the concrete-representation-abstract sequence. They specifically
advocated hands-on experiences during the concrete phase;
helping students understand abstraction on a concrete level
involves the use of manipulatives. Then, at the representational
phase, pictures help the students transition to the abstract,

symbolic phase. Witzel et al. asserted that students with learning
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disabilities require this three-phase support in learning abstract
mathematical concepts.

Professor Zemira Mevarech, head of the School of
Education at Bar Ilan University, and formerly the chief scientist
at the Israeli Education Ministry, cited the importance of guiding
students from the concrete to abstract stages as they learn
mathematics (Sa’ar, n.d.). In Sa’ar’s article, Mevarech
commented on the successful mathematics program from
Singapore. Singapore eighth-grade mathematics achievement on
the TIMSS report was ranked first in both 1995 and 1999
(Schmidt, 2000). Sa’ar quoted Professor Mevarech.

b

”The Singaporean programs moves gradually,” explains
Mevarech, whose field of expertise is the teaching of
mathematics, “from concrete illustration (objects) to
visual illustrations (pictures) and then to abstract concepts
- numbers. Thus a pupil deepens his understanding of the
subject and internalizes the mathematical concepts.” (Y 25)
Moyer (2001) claimed that the sensory experiences with

manipulatives help students understand mathematical concepts.

Students have clearer mental images as a result of seeing and

manipulating various objects (Kennedy, 1986). Mental imagery

is crucial to the ability to think with numbers; imagery is the
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sensory-cognitive connection for mathematics (Bell & Tuley,
2006). Bell and Tuley explained that thinking mathematically
requires the dual coding of language and imagery; the people
who understand mathematics turn language into imagery. To
emphasize the importance of imagery, they quoted Albert
Einstein who said, "If I can't picture it, I can't understand it"
(p- D).

”Manipulative materials are significant learning aids in all
four [of Piaget's cognitive] stages” (Kennedy, 1986, p. 6).
Kennedy concluded that research “supports the use of
manipulatives at all school levels” (p. 7). Middle level students
need the manipulatives just as much as elementary students do
since the middle level concepts are just as abstract to that age
student as elementary concepts are to younger children. Stewart
(2003) noted that the increase in abstraction in mathematics in
elementary grades often coincides with the decrease in the use of
manipulatives. As a result, few middle school teachers use
manipulatives (Stewart, 2003). Much research exists on the
importance of manipulatives at the elementary school level but
there is little information involving manipulatives at the middle

and high school levels (Weiss, 2006).

51



Some teachers may not have been trained to utilize the
developments in cognitive psychology that suggest the value of
manipulative materials (Weiss, 2006). Teachers who have
traditional training may see themselves as the “expert who
dispenses knowledge to students” (Moyer & Jones, 1998, p. 34).
Those middle school teachers who have been instructed to use
manipulatives must correctly implement them in order to benefit
students in the middle grades (Weiss, 2006).

Moyer and Jones (1998) found variation in the
implementation of manipulatives among middle school teachers.
Teachers who do not value manipulatives as mathematical tools
will not convey the usefulness of manipulatives to their students;
students in these teachers’ classes may see the manipulatives as
toys instead of tools. Conversely, “teachers who demonstrate
how to use the manipulatives as tools for better understanding
are opening doors for many students who struggle with abstract
symbols” (p. 35). It is important to give students time for and
access to manipulatives. With time, access, and the proper
guidance, students will view manipulatives as necessary tools in
the mathematical environment.

Testimonials attest to the contributions of manipulative

materials. Allen (2003) quoted Johnny Lott, then president of
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NCTM. “There are people in this country who think all kids
can’t do mathematics, but we say that all kids can learn if math
is presented in a good way—having a knowledgeable teacher and
quality materials including texts and manipulatives” (p.1).
Herbert (1985), a middle-school teacher, claimed that
manipulatives are “good mathematics” because they result in
better achievement, understanding, motivation, and student

involvement.

Hands-On Equations Learning System
In an interview, Borenson explained the constructivist
aspects of Hands-On Equations (Agency for Instructional
Technology, 2003). "In HOE, we give the students a concrete
representation of the algebraic symbols and algebraic processes.
The symbols are represented by game pieces. The algebraic

'

processes are represented by physical actions upon these pieces'
(13).

The concepts learned with Hands-On Equations are basic
and crucial such as the concept of equality (Borenson, 1994).
Borenson also asserted that students learn the addition and
subtraction properties of equality which reinforce their
understanding of equality. Other concepts that are covered

include the concept of a variable, and the addition and
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subtraction of positive and negative numbers. Students learn
essential concepts related to zero, such as additive inverse and
additive identity.

Research Studies on Hands-On Equations

Studies that involved Hands-On Equations are limited to
four. A master’s thesis was written by Barclay (1992) and
another study was done by Leinenbach and Raymond (1996).
Two dissertations were found. One was written by Busta (1993)
and the other by Suh (2005).

The Leinenbach and Raymond (1996) contribution was a
2-year action research collaborative study where an eighth-grade
teacher with 22 years of experience was confronted with the
mandated dilemma of teaching algebra to all students. Concerned
that she could not teach all students using the traditional
approach, Leinenbach, the teacher, began teaching with a
manipulative approach by using Hands-On Equations. After
initiating this program, she became apprehensive about her
students’ transition to traditional algebra. She met with a
university researcher, Raymond, who collaborated with
Leinenbach on the action research project in order to find out if
the Hands-On Equations manipulative approach would affect

students’ confidence and interest in algebra, affect students’
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ability to solve algebraic equations, and impact students’
retention of algebraic skills beyond the eighth-grade experience.

Students were taught with a traditional method using the
textbook during the first nine-weeks of the school year
(Leinenbach & Raymond, 1996). All 26 lessons of Hands-On
Equations were taught next. After the Hands-On Equations
lessons were finished, the students were taught using the
traditional textbook once again. In general, student scores or
grades were higher during the manipulative phase than during
either of the traditional phases. Student grades were lower in
the second traditional textbook phase and caused Leinenbach to
wonder if the students had been hampered by the manipulatives
and were dependent on them in order to complete algebra
problems. Another possibility Leinenbach considered was that
the students were not making the connection between the
concrete manipulatives and the abstract algebra in their
textbooks. She surmised that a likely reason was that her
students did not enjoy the textbook as much as the manipulatives
and were less motivated to do well during the second exposure to
the textbook.

When a standardized algebra test was administered to all

eighth-grade students in Leinenbach’s middle school, her
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students’ performance far exceeded expectations (Leinenbach &
Raymond, 1996). These results assuaged her fears and she
concluded that her students had indeed bridged the gap between
the concrete algebra and the abstract algebra required on the
test. The reported conclusions from the first year’s data
indicated that most of the eighth-graders performed better
academically with the manipulatives, Hands-On Equations, in
comparison to the text. Students also expressed more positive
attitudes about algebra when working with the manipulatives.
The retention data from the second year of the study was not
included in the publication.

In Barclay’s (1992) study, 123 sixth graders were taught
five lessons with Hands-On Equations. A pretest with 10 one-
variable linear equations was administered. Students were asked
to solve for x in equations such asx + 6 =9,
I3+x+x=x+3+3x,and 3(x + 1) =10 + 2x. Comparable
posttests were given immediately after instruction, three weeks
later, and six weeks later. Students used the Hands-On Equations
manipulative materials during the tests. Scores, expressed as
percents, were assigned to each student based on the number of
correct responses. Thus a student who correctly answered 8 out

of the 10 problems would receive a score of 80%.
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The four tests were used to assess retention and concept
mastery (Barclay, 1992). Only one student out of the total
demonstrated mastery (80%) on the pretest; all but one student
demonstrated mastery on the immediate posttest. Results on the
three-week retention test were somewhat lower with an
unexpected rise in scores on the six-week retention test. No
intervening review of the algebra occurred between test
administrations. Barclay carefully analyzed reasons for
individual responses as she reported her data. She observed that
many students entered the three-week retention test with “an
overconfident, almost careless, attitude” (p. 30). Many students
appeared eager for another opportunity to improve their scores
with the six-week retention test. They also checked their work
which was not done as frequently during the three-week testing.
She concluded that these actions may account for the
improvement seen in the six-week test scores.

Barclay (1992) decided that the students had indeed
learned the algebra based on their test results. She reported that
100% of the students demonstrated at least 80% mastery on at
least two of the three posttests and 87% of the students attained

the 80% mastery level on all three posttests.
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Busta (1993) studied the relationship between middle
school students’ knowledge of the concept of variable and the
use of the concrete manipulatives Hands-On Equations. In
addition, her study attempted to discern what effect, if any, the
Hands-On Equations materials would have on students' attitudes
toward mathematics. The research involved 13 teachers who
volunteered to be a part of the study and 335 students at the
sixth-, seventh-, and eighth-grade levels. Busta believed that all
students in the study had limited exposure to the concept of
variable since none of the textbooks prior to 1991 included this
algebraic concept in the books the students were using. Students
were pretested at the beginning of the school year and were
posttested after seven weeks. The experimental group of
students had one 30-minute Hands-On Equations lesson per week
during the seven-week period. These lessons were from the first
level of Borenson's Hands-On Equations materials.

The results of Busta's (1993) research revealed that
students' attitudes were positively correlated with students'
knowledge of the concept of variable. Students in the sixth grade
who used Hands-On Equations did significantly better on the
posttests than did students who did not learn with the

manipulative materials. In the seventh grade group, all students
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increased their knowledge of the concept of variable with no
difference between the experimental and control groups. The
diverse differences in students in the eighth grade subjects led to
unclear results for this group. There were no discernable
differences in students' attitudes toward mathematics after the
seven-week period. Busta recommended a qualitative study to
better examine seventh graders' attitudes since the seventh-grade
teachers indicated that their students had "thoroughly enjoyed
working with the materials. This was not evident in the attitude
measure results" (p. 118). Busta also recommended a follow-up
study where all three levels of the Hands-On Equations materials
would be taught.

Suh (2005) investigated the achievement of third graders
when using virtual and physical manipulatives for adding
fractions and balancing equations. The research was conducted
with 36 students in two classrooms. One group of students
worked with virtual manipulatives for four fraction lessons
during one week and then had four lessons with the Hands-On
Equations physical manipulatives during the second week of the
study. Conversely, the other classroom worked with the fraction
manipulatives during the first week and the virtual balance scale

appelet during the second week of the study.
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Students in the virtual manipulative fraction treatment
group performed statistically better than the students who
worked with the physical manipulative fraction circles. There
was no statistically significant difference between the virtual
and physical algebra methods. An examination of the algebra
pretest and posttest revealed that the pictures used in the tests
were of the virtual balance scale only and did not include
pictures of the Hands-On Equations balance scale.
Advantages of Hands-On Equations

Borenson (Borenson and Associates, n.d.b) claimed to
have taught third, fourth, and fifth graders to solve equations
such as 4x+2=3x+9 during live demonstrations at over 1000
workshops during a recent 10-year period. Systematic successful
intervention with resulting mastery of basic algebra concepts is
the goal espoused by Borenson (1994). Borenson also claimed
that students actively engage in Hands-On Equations because the
game-like format is interesting to them. In an interview with a
newspaper reporter (Carnopis, 1987), Borenson claimed that
Hands-On Equations gives confidence in algebra and builds the
self-esteem that allows young students to feel good about

algebra.
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Ghazi (2000) observed Vicki Fisk’s Somerset Elementary
classroom in Maryland where Hands-On Equations was being
taught. Ghazi reported that at that time these materials were a
required part of the curriculum in Maryland’s Montgomery
County schools. During her observation, Ghazi noted the
enthusiasm of 10-year-olds who wanted to explain how they
solved 2(3x + 1) = x + 22. The title and subtitle of her article,
Catch them young: Fear + loathing = algebra. Unless you're
one of the thousands of 9-year-old Americans to have discovered
that algebra = fun, reflected her opinion after watching the
children work with Hands-On Equations. After visiting American
classrooms, Ghazi reported her findings in The Guardian, a
United Kingdom publication, and wrote that British mathematics
experts were astounded that such young children could work
problems usually reserved for bright 12-year-olds or average

14-year-olds in Britain.

Memory and Long-Term Remembering
"Memory may be better understood when partitioned into
separate components, stages, or processes than when treated as a
unitary trait" (Terry, 2006, p. 225). Terry explained the need for
this partitioning of memory. Generalizations about memory as a

whole are not valid but descriptors of particular forms of
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memory are accurate. The various partitions of memory, "each
with different characteristics, may be simpler to construct and to
use than a single memory system that has many discordant facts"
(p. 195).

The first partitioning of memory involves memory
components (Terry, 2006). The two major components are short-
term memory and long-term memory. Each component is
considered to have opposing characteristics that distinguish the
two components. Short-term memory is of a short duration
lasting 15-30 seconds under laboratory testing conditions, has
limited capacity of only a few items, and displaces the current
contents with later-occurring items that results in the forgetting
of the initial information. In contrast, long-term memory lasts
indefinitely, is limitless in size, and is durable.

Long-term memory is further divided into three types of
memory—procedural, semantic, and episodic (Tulving, 1985).
Procedural learning is termed "knowing how" rather than
"remembering that" which is associated with both episodic and
semantic memory (Terry, 2006, p. 203). Terry separated
procedural memory from the other two types but then further
distinguished between episodic and semantic types of memory.

Semantic memory is related to general knowledge whereas
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episodic memory includes autobiographical memories and is the
personal memory system. Terry further explained that semantic
memory is "more like dictionary or encyclopedic knowledge. It
includes facts, words, language, and grammar" (p. 199). He
claimed that the phrases "I remember" versus "I know" (p. 199)
correspond to episodic and semantic memory, respectively.

A second partitioning of memory involves three stages of
memory (Terry, 2006). Those stages are encoding, storage, and
retrieval; any one of these stages could contain problems that
lead to forgetting. For example, a student may not know the
answer to a test question because he did not learn the material
initially (encoding), he learned the answer but has lost it from
memory (storage), or he cannot recall the answer (retrieval).
Another example Terry offered suggested that memory lapses in
older persons could be the result of weaker encoding rather than
the assumed "faster forgetting or difficulty in retrieving
memories" (p. 261). Effective retrieval from episodic memory
depends on three general factors which include the
distinctiveness of the memory, practice at retrieving the memory
which may be in the form of taking repeated tests, and retrieval
cues. One explanation for why distinctive events are retrieved

better is that their retrieval cues are uniquely linked with a
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single memory. Cues that were encoded with the recalled item
or event are good retrieval cues. The matching of cues between
encoding and retrieval is termed encoding specificity.

A third partitioning of memory deals with processes of
memory; "the kind or quality of processing determines
memorability "(Terry, 2006, p. 210). The two sub-categories
within this approach are depth of processing and transfer-
appropriate processing. Depth of processing may be either
shallow or deep and involves either maintenance rehearsal or
elaborative rehearsal. Maintenance rehearsal, or the passive
repetition of information, may contribute to memory loss. In
contrast, elaborative rehearsal requires active processing by the
learner on a deeper level. It is characterized by meaningful
analysis and comprehension of the material. Learning strategies
are examples of elaborative rehearsal. "Elaborative rehearsal
should lead to longer retention than does maintenance rehearsal"
(p 211). Terry added, "Depth-of-processing theory was so
successful that, in a sense, it no longer exists as a separate
approach to memory but has been assimilated into other
approaches" (p. 212). The second sub-category is transfer-
appropriate processing. This theory links the encoding and

retrieval stages and asserts that the cognitive operations present
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at encoding need to match the cognitive thought processes in use
at the retrieval stage for optimum remembering. Terry concluded
his summary of the research on the three approaches to memory
with a point of clarity. "The several approaches could be viewed
as complementary rather than as exclusionary" (p. 214).

Bartlett’s Remembering: A Study in Experimental and
Social Psychology has been continually cited in the literature
since it was first published in 1932 (Johnston, 2001). Johnston
noted that Bartlett’s book has been reissued twice, in 1964 and
in 1995. Johnston also highlighted the “striking parallel between
the treatment of F.C. Bartlett’s theories of memory in the
psychological literature and Bartlett’s own characterization of
reproductive memory as interest driven and constructive”
(p-341). Bartlett (1932) described “every human cognitive
reaction—perceiving, imaging, remembering, thinking and
reasoning—as an effort after meaning” (p. 44).

Johnston ( 2001) linked Piaget and Bartlett by their
common use of the schema concept. Johnston wrote that
Bartlett’s concept of the memory schema contributes to his
continuing influence. Another aspect of Bartlett’s contributions
is his denouncing of the then-current popularity of Ebbinghaus

and his emphasis on stimulus-response. Bartlett’s viewpoint fed
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the “everyday-laboratory memory debate” (p. 344); Bartlett was
interested in everyday responses from people rather than
artificial laboratory settings for psychological research. Bartlett
(1932) said, “I have used exactly the type of material that we
have to deal with in daily life” (p. 204).

From numerous everyday-type experiments, Bartlett
(1932) synthesized a theory of remembering that he described in
his chapter ten. Even though Bartlett did not prefer the term
schema, he settled on it as the term needed to describe his
theory. “ ‘Schema’ refers to an active organization of past
reactions, or of past experiences, which must always be
supposed to be operating in any well-adapted organic response”
(p- 201). Bartlett went on to say that “remembering appears to be
far more decisively an affair of construction rather than one of
mere reproduction” (p.205). He also explained that attitude
impacts all of memory.

Several variables on long-term memory for knowledge
learned in classrooms were delineated by Semb, Ellis, and
Araujo (1993). They included the “degree of original learning,
the tasks to be learned, characteristics of the retention interval,
the method of instruction, the manner in which memory is tested,

and individual differences” (p.305). In three experiments with
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college students, these researchers found that students
remembered a great deal of what they learned in college. The
research results indicated that all listed variables do impact
memory.

Howe (2000) drew on the work from classic literature on
memory retention in order to conclude that “slower learners may
forget more rapidly” (p. 122). He thus asserted that it is
necessary to know the amount of learning that was acquired
initially in order to interpret the outcomes of later assessments
of long-term retention. Howe claimed that without information
about the state of learning at the end of acquisition, the
confounding of learning and forgetting is practically guaranteed.

"The primary determinant of persistent retention is the
initial level of acquisition" (Terry, 2006, p.302). Students who
took higher-level courses in high school and earned better grades
retained more. Terry cited studies where most of the forgetting
occurred in the first few years; the retained material then
remained stable for as many as 50 years afterward.

Bahrick, Bahrick, and Wittlinger (1975) reported on 50
years of memory for names and faces. These authors made the
case for the non-laboratory approach to the study of memory.

They found that the research participants thoroughly remembered
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classmates by name or face recognition for 14 years after
graduation and that memory did not decline noticeably until 47
years later. Free recall tests ranged from 15 percent recall for
recent graduates to less than 7 percent recall for the oldest
graduates. "This is far better than would be anticipated from
laboratory studies" (Terry, 2006, p. 301). Bahrick et al.
concluded that social context is important to recall performance
and less valuable with recognition performance. These
researchers attributed the very slow forgetting to the effects of
distribution of practice and overlearning (Bahrick et al.). The
repeated exposure to classmates and the spaced repetition of
these exposures over holidays and summer vacations made the
difference in this study of naturalistically learned material
(Bahrick et al.).

Bahrick (1984) also conducted a study that dealt with
knowledge learned in school, specifically the Spanish language.
In this study, 773 individuals were tested. A noticeable decline
in retention occurred in the first 3-6 years but thereafter
remained unchanged for periods of up to 30 years before once
again declining. The research data revealed that rehearsal did not
occur enough to be a factor in this study. This fact led to

"significant conclusions regarding the semipermanent nature of
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unrehearsed knowledge" (p. 2). Remembering was a function of
the level of original training, the grades received in Spanish
courses, and the method of testing (recall vs. recognition).
Semb, Ellis, and Araujo (1993) asked, "How much is lost
from classroom learning over periods typically much longer than
those studied in laboratory experiments?" (p. 306). The authors
mentioned the earlier laboratory studies of Ebbinghaus and
others which found that memory should decline over time. Semb
et al. discovered that students retained a great deal of the
original learning. The child psychology college students in the
study remembered 85% after 4 months and about 80% after 11
months. The results supported the theory that the degree of
original learning is a definite factor in how much is remembered.
Groups of college students who had completed a cognitive
psychology course were studied (Conway, Cohen, & Stanhope,
1991). The largest amount of forgetting happened within 3 to 4
years. In the very long-term retention of cognitive psychology,
concepts were remembered better than proper names of theorists.
General factual knowledge and knowledge of research methods
showed no decline. The authors concluded that detailed and
specific information may be retained in memory over very long

retention periods.
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Some researchers investigated unusual retention rates.
This phenomenon is termed hypermnesia and is defined as the
"abnormally vivid or complete memory or recall of the past"
(Woolf, 1981, p.558). In the context of looking at the effect of
repeated testing on students' memory, Bahrick and Hall (1993)
found that hypermnesia is present even when testing intervals
are long. This occurred when the tests covered a stable body of

content knowledge.

Self-Efficacy and Mathematics

Bandura (1986) defined self-efficacy as the self
assessment of one’s capability to succeed to a certain level in
specific subject areas. With this definition, a person’s self-
efficacy is “expected to vary depending on the particular activity
domain or situation under consideration” (Lent, Brown, & Gore,
1997, p.307). Hohn (1995) clarified the specificity of this
concept with an explanation and example, “Self-efficacy
judgments are specific to certain domains in which we judge
ourselves to possess competence. We describe ourselves, for
example, as ‘good in writing but not so good with numbers’”
(p. 168). Pajares and Miller (1995) confirmed the importance of

matching the self-efficacy assessment with the particular task.
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They warned against the use of global statements such as “I am
not so good at mathematics” (Pajares & Miller, 1995, p.197).

Four major sources used by people to develop their self-
efficacy beliefs are personal performance accomplishments,
vicarious learning, verbal persuasion, and emotional arousal
(Bandura, 1986). Lent, Lopez, and Bieschke (1991) found that
personal performance accomplishments contributed the most
influence as a source of efficacy information.

The applied implications of the research of Lent, Lopez,
and Bieschke (1991) included educational interventions for
students who were “unrealistically low in mathematics self-
efficacy” (p. 429). The suggested interventions included
systematically structured mastery experiences in mathematics.
Lent et al. stated that students need enough exposure to
mathematics to form an opinion about themselves. They
suggested that numerous successful structured mastery
experiences would contribute to a more positive mathematics
self-efficacy in students.

Self-efficacy may impact important outcomes such as
career choice (Hackett & Betz, 1989), and effort and persistence
in the face of obstacles (Bandura, 1986). A study that focused on

the relationship between interests and self-efficacy as predictors
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of mathematics/science-based careers was conducted by Borget
and Gilroy (1994). Their results showed that interest is the
stronger indicator of career choice but self-efficacy is the better
predictor of success and persistence in the chosen career (Borget
& Gilroy, 1994). Lent, Lopez, and Bieschke (1991) found that a
pattern of past success experiences possibly promotes self-
efficacy which then leads to an increased interest in the
particular domain. Lent et al.(1991) explained that this interest
then motivates further exposure to the subject matter which then
impacts future career choices.

More recent research (Pietsch, Walker, & Chapman, 2003)
confirmed that self-efficacy in mathematics predicts future
performance in mathematics. The work of Marsh, Dowson,
Pietsch, and Walker (2004) reexamined and questioned the
relations among self-efficacy, self-concept, and achievement.
The work that they reexamined was that done by Pietsch, et al.
in 2003. The reexamination did not dispute the idea that self-
efficacy impacts mathematics performance.

A study involving 518 fifth- and seventh-grade children
tried to discover why girls outperform boys in terms of grades.
This research focused on the differing ways boys and girls

approach schoolwork. The results indicated that sex differences
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in disruptive classroom behavior and in achievement goals
influence the students' grades (Kenney-Benson, Pomerantz,
Ryan, & Patrick, 2006). This advantage for girls over boys did
not continue with achievement tests.
Although girls should feel more efficacious than boys
because of their better performance, girls often have lower
self-efficacy in stereotypically masculine areas, such as
math, than do boys. The current findings suggest that in
the context of taking achievement tests, girls' self-efficacy
may negate some of the positive effects of how they

approach school. (p.22)

Attitude Toward Mathematics

Mager (1968) described attitude as a general tendency of a
person to act in a “certain way under certain circumstances”
(p. 14). A person with a favorable attitude exhibits some sort of
moving toward behavior by which one predicts continued
“moving toward” behavior. Conversely, avoidance behavior is
associated with a negative attitude. Mager asserted that teachers
should influence students to develop a favorable attitude toward
a subject in order to maximize the possibility of remembering,

using, and learning more about that subject in the future.
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Neale (1969) defined attitude toward mathematics in terms
of the characteristics delineated in inventories that were used to
measure it. Those characteristics included “a liking or disliking
of mathematics, a tendency to engage in or avoid mathematical
activities, a belief that one is good or bad at mathematics, and a
belief that mathematics is useful or useless” (p. 632). On the
basis of studies he reviewed, Neale first hypothesized that
students develop increasingly unfavorable attitude toward
mathematics as they progress through school and secondly, the
impact of those negative attitudes on the learning of mathematics
is limited. He stated that the first hypothesis would be of more
concern if the second hypothesis were not true.

Ma and Kishor (1997) conducted a meta-analysis on the
relationship between attitude toward mathematics (ATM) and
achievement in mathematics (AIM). These researchers were
prompted to do their study because of the lack of consensus in
the research literature about this potential relationship. The
criteria for the inclusion of each of the 113 studies employed a
definition of ATM that was similar to the one used in the meta-
analysis, an investigation of the relationship between ATM and
AIM, the use of psychometrically-developed instruments, no

inclusion of experimental interventions on either attitude or
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achievement, elementary and/or secondary students, and enough
detailed data to calculate an effect size. The overall mean effect
size was 0.12 which was “statistically significant but not strong
for educational practice” (p. 39). The effect size for the causal
relationship for ATM(cause) and AIM (effect) was 0.08 and
deemed to have no practical implication.

One conclusion drawn by Ma and Kishor (1997) was that
current attitude measures are “very crude approximations to
‘true’ attitudes” (p. 39). They suggested that researchers should
refine these assessment tools. They attributed weak relationships
at the elementary school level to younger students’ inability to
verbalize their attitude toward mathematics and the lack of
stability at that age level. Ma and Kishor’s review of the meta-
analysis results caused them to believe that the ATM-AIM
relationship may be impacted the most during the junior high
school years. One of their suggestions for further research on the
ATM-AIM relationship was to include mathematics ability as a
key variable.

Moyer and Jones (1998) claimed that the use of
manipulatives has “the potential to improve student attitudes and
student intrinsic motivation” (p. 35). Students who were

allowed to use manipulative materials in their daily mathematics
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lessons appreciated the usefulness of these learning tools for
constructing meaning. Having access to manipulatives on
individual desks supported this improved attitude by giving the
students more time to explore, investigate, and construct
meaning. Moyer and Jones advocated the use of manipulatives
as often as other mathematical tools such as rulers and
protractors.

Singh, Granville, and Dika (2002) found that mathematical
achievement was affected by academic time, mathematics
attitude, and motivation. Three items were used to gather data
about the attitude construct. Respondents were asked about
whether or not they looked forward to mathematics class, the
usefulness of mathematics in the future, and the student’s level
of boredom in school. While academic time exerted the strongest
direct effect, mathematics attitude affected both academic time
and achievement. Their research concluded that attitude is

influential in explaining mathematics achievement variations.

Summary
Algebra is distinctly different from arithmetic; algebra
focuses on general relationships and has been termed the
generalization of arithmetic (Costello, 1993; Esty, 1999;

MacGregor & Stacey, 1999; Saul, 2001; Tierney & Nemirovsky,
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1997). Children as young as sixth grade are able to go from the
specific to the general by discerning patterns and then
generating helpful formulas (Herbert & Brown, 1997).

The National Assessment of Educational Progress (NAEP)
assessed important, informal algebraic concepts related to
patterns and relationships (Kenney & Silver, 1997). The 1992
NAEP assessed fourth graders’ algebraic thinking involving
patterns of figures, symbols, or numbers. Fourth graders could
reason with simple patterns but had more trouble with complex
patterns and explaining their mathematical reasoning about
patterns. A close examination of the NAEP algebra and
functions question data for fourth-grade students from The
Nation’s Report Card (National Center for Education Statistics,
n.d.) revealed that a majority of the students could answer
procedural knowledge questions correctly but stumbled when
required to deal with conceptual-understanding and problem-
solving questions. This information confirms the pattern for
American students of performing well on computational tasks
but not achieving as well on problems that demand deeper
mathematical understanding (Kilpatrick, Swafford, & Findell,

2001).
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Data from the state of Kansas (Center for Educational
Testing and Evaluation, n.d.a; Center for Educational Testing
and Evaluation, n.d.b) reported achievement levels of fourth-
grade students. These data indicated an improvement in
algebraic knowledge for Kansas fourth graders from 2000 to
2005.

The Third International Mathematics and Science Study
(TIMSS) was a large-scale international study that revealed the
comparative inadequacies of algebra learning in American
schools (U.S. National Research Center, 1996). For example,
United States students in the eighth grade study arithmetic,
fractions, and a small amount of algebra in contrast to both
Japan and Germany whose students receive thorough exposure to
both algebra and geometry.

Kieran (1992) included two areas that impact student
learning in algebra: the content and the students. Various
authors make the case that the content of algebra is inherently
difficult because algebra is both a language and an abstract
system with specific rules that are difficult to learn (Esty, 1999;
Hatfield, Edwards, Bitter, & Morrow, 2005; Usiskin, 1996; Von
Rotz & Burns, 2002). Kieran (1989) observed that the language

aspect of algebra is difficult for high school students to
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decipher. Kieran’s (1992) analysis of the research related to the
learning of algebra supported her overall conclusion that
students do not understand the more difficult structural aspects
of algebra. Bruner (1960) and Rittle-Johnson and Alibali (1999)
also emphasized the importance of helping students understand
the structure of the subject.

Kilpatrick et al. (2001) confirmed that many students have
difficulty in making the transition from school arithmetic to
school algebra for various reasons including the symbolism of
algebra. Rubenstein and Thompson (2001) asserted that students
who do not master the standard symbolism of mathematics will
be hindered at some point in their mathematical careers.
Oftentimes, students do not understand the equality symbol as an
indicator of equality (Behr, Erlwanger, & Nichols, 1976;
Erlwanger & Berlanger, 1983; Kieran, 1981; Saenz-Ludlow &
Walgamuth, 1998).

A lack of opportunity to learn algebra may be another real
issue for students; the NAEP (National Center for Education
Statistics, n.d.) data bank revealed how infrequently fourth-
grade teachers addressed algebra and functions. When teachers
do teach the subject, the Third International Mathematics and

Science Study (TIMSS) revealed that students often experience

79



traditional teaching methodologies rather than the reform
curriculum suggested by research (Stigler, Gonzales, Kawanaka,
Knoll, & Serrano, 1999). Carraher, Schliemann, Brizuela, and
Earnest (2006) concluded that students’ difficulties with algebra
may more closely relate to teaching techniques rather than a
developmental inability. One reason for this lag in appropriate
teaching may be that United States mathematics teachers rarely
have time to teach any subject in depth because they are
expected to teach such a wide range of subjects (Lane, 1996).
This breadth instead of depth is obvious in the textbooks and
curriculum and makes a difference in student learning (Schmidt,
1996). An often-quoted accusation described the United State’s
curriculum, textbooks, and teaching as “a mile wide and an inch
deep” (Schmidt, 1996, § 5).

Two distinct theories over the past 100 years have shaped
the discussion on learning. Behaviorism deals with externally
observable events, instructional manipulations and outcome
performance, whereas a cognitive approach to learning includes
internal factors such as learning processes and existing learner
characteristics (Mayer, 1999). An example of behaviorism in
mathematics education is the use of flash cards when teaching

math facts (Hohn, 1995). Constructivism is a cognitive learning
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theory that emphasizes that understanding must be constructed
by the learner (Lemlech, 2002). Constructivism has become the
accepted theoretical position among mathematics education
researchers (Battista, 1999; von Glasersfeld, 1995). Others
(Hohn, 1995; Goldin & Shteingold, 2001) advocated for a
unified theory that includes both schools of thought. Such an
inclusive educational philosophy would include both
behaviorism and constructivism and would value both skills
acquisition and complex problem solving (Goldin & Shteingold,
2001).

When learning mathematics, children either retrieve
solutions from memory or revert to more time-consuming
alternative strategies that make sense to them (Siegler, 1998).
Attempted recall with limited conceptual understanding leads to
problems in the learning of mathematics. In algebra, Siegler
asserted that superficial understanding is exemplified by
students who merely manipulate the algebraic symbols without
understanding any real-world applications. Such students may
make incorrect extensions of correct rules and generalize
inaccurately. Current thinking on the cognitive development of
11- and 12-year-olds questions Piaget's idea of explicit general

developmental stages (Flavell, 1992; Siegler, 1998).
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Contemporary developmentalists believe that cognitive
development is more balanced with both general stagelike
attributes and specific properties that relate to particular content
areas (Flavell, 1992). Prior content knowledge influences what
people are able to learn (Siegler, 1998). Mayer (1999) and
Bruner (1960) supported the idea that skills needed to solve
mathematics problems can be taught regardless of a student's
age.

Manipulative materials are objects that can be handled by
the learner (Kennedy, 1986). Manipulatives have been shown to
help children move from the concrete level to the abstract level
(Hartshorn & Boren, 1990). Hartshorn and Boren found that a
transition stage between these two levels is crucial. Teachers
must carefully structure the use of the connecting or pictorial
intermediate stage in order for students to make the connection
(Hartshorn & Boren, 1990; Sa'ar, n.d.; Witzel, Smith, &
Brownell, 2001). Mental imagery formed by handling
manipulative materials helps students understand mathematical
concepts (Bell & Tuley, 2006; Kennedy, 1986; Moyer, 2001).

Manipulative materials should be used at all school levels
(Kennedy, 1986). Stewart (2003) noted that the increase in

abstraction in mathematics in elementary grades often coincides
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with the decrease in the use of manipulatives. Much research
exists on the importance of manipulatives at the elementary
school level but there is little information involving
manipulatives at the middle and high school levels (Weiss,
20006).

Henry Borenson (1994) created manipulative materials, the
Hands-On Equations Learning System, to support the learning of
algebra for students as young as 8 years old. Borenson claimed
that the system (hereinafter referred to as Hands-On Equations)
imparts important mathematical content, promotes mathematical
interest, and heightens student self-esteem. These materials
were specifically designed to meet the algebraic needs of
teachers and students in the elementary grades. Borenson’s
materials have been available since the early 1990s, but few
research studies have been done to explore the value of Hands-
On Equations.

Four studies dealt with Hands-On Equations. The 123 sixth
graders in Barclay's (1992) study were taught five lessons with
Hands-On Equations. Posttest results showed that 100% of the
students demonstrated at least 80% mastery on at least two of
three posttests. Leinenbach and Raymond (1996) worked with

eighth graders. When these students took a standardized algebra
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test, their performance far exceeded expectations. The students
also expressed more positive attitudes about algebra when
working with the manipulative materials in Hands-On Equations.
Busta (1993) studied the impact of Hands-On Equations on 335
middle school students in grades 6, 7, and 8. The students were
taught one lesson per week for seven weeks. The sixth graders
who experienced Hands-On Equations did significantly better on
the posttest than the control group did. Virtual and physical
manipulatives for adding fractions and balancing equations were
included in Suh's (2005) research. Two classrooms with a total
of 36 students were taught four lessons with virtual
manipulatives in one content area (fractions or algebra) and then
experienced four lessons with physical manipulatives on the
other topic (fractions or algebra). The physical manipulatives
used when teaching the balancing of equations was Hands-On
Equations. Students in the virtual manipulative fraction
treatment group performed statistically better than the students
who worked with the physical manipulative fraction circles.
There was no statistically significant difference between the
virtual and physical algebra methods.

The advantages of Hands-On Equations have been reported

by others (Borenson and Associates, n.d.b; Carnopis, 1987;
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Ghazi, 2000). Borenson claimed that third, fourth, and fifth
graders were taught to solve equations such as 4x+2=3x+9
during live demonstrations at over 1000 workshops during a
recent 10-year period. He explained that the game-like format is
interesting to students (Borenson, 1994) and gives them
confidence and self-esteem that allows them to feel good about
algebra (Carnopis, 1987). Ghazi (2000) observed and reported on
the enthusiasm of 10-year-olds when working with Hands-On
Equations. She wrote that British mathematics experts were
astounded that such young children could work problems usually
reserved for bright 12-year-olds or average 14-year-olds in
Britain.

Research has shown that memory and learning are related
topics. Memory is better understood when partitioned rather than
considered as one unit (Terry, 2006). Terry explained that
generalizations about memory as a whole are not valid but
descriptors of particular forms of memory are accurate. One
partitioning involves two major memory components: short-term
memory and long-term memory. Long-term memory is further
divided into three types of memory—procedural, semantic, and
episodic (Tulving, 1985). A second partitioning of memory

involves three stages of memory (Terry, 2006). Those stages are
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encoding, storage, and retrieval; any one of these stages could
contain problems that lead to forgetting. Effective retrieval from
episodic memory, the autobiographical or personal memory
system, depends on factors such as the distinctiveness of the
memory and retrieval cues. One explanation for why distinctive
events are retrieved better is that their retrieval cues are
uniquely linked with a single memory. Cues that were encoded
with the recalled item or event are good retrieval cues. A third
partitioning of memory deals with processes of memory and has
two sub-categories, depth of processing and transfer-appropriate
processing (Terry, 2006). The importance of depth of processing
is widely accepted as leading to comprehension of material.
Transfer-appropriate processing links the encoding and retrieval
stages for optimum remembering. Terry emphasized that the
three approaches to memory were complementary rather than
exclusionary.

Bartlett's Remembering: A Study in Experimental and
Social Psychology has been continually cited in the literature
since it was first published in 1932 (Johnston, 2001). Bartlett
(1932) described "every human cognitive reaction—perceiving,
imaging, remembering, thinking and reasoning—as an effort

after meaning" (p. 44). Johnston (2001) linked Piaget and
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Bartlett by their common use of the schema concept. Schema
involves the active organization of past reactions or past
experiences (Bartlett, 1932). Bartlett asserted that remembering
is more construction than mere reproduction. He also explained
that attitude impacts all of memory.

Several variables on long-term memory for knowledge
learned in classrooms were delineated by Semb, Ellis, and
Araujo (1993). They included the "degree of original learning,
the tasks to be learned, characteristics of the retention interval,
the method of instruction, the manner in which memory is tested,
and individual differences" (p. 305). Howe(2000) emphasized
the importance of knowing the initial degree of learning in order
to interpret later assessments of long-term retention. Terry
(2006) stated that the initial level of acquisition impacts
retention. Bahrick, Bahrick, and Wittlinger (1975) made the case
for the non-laboratory approach to the study of memory. They
found that people could remember classmates’ names and faces
for almost 50 years. They attributed this long recall to
distribution of practice and overlearning of the naturalistically
learned material. Bahrick (1984) looked at knowledge learned in
school and found that there is a semi-permanent nature of

unrehearsed knowledge. Other researchers (Conway, Cohen, &
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Stanhope, 1991; Semb, Ellis, & Araujo, 1993) also found that
students remembered classroom learning over long periods of
time.

Hypermnesia is the "abnormally vivid or complete memory
or recall of the past" (Woolf, 1981, p. 558). Bahrick and Hall
(1993) concluded that hypermnesia may be apparent when
assessment tests cover a stable body of content knowledge.

Research has studied the role of self-efficacy on students’
learning. Bandura (1986) defined self-efficacy as the self
assessment of one's capability to succeed to a certain level in
specific subject areas. Hohn (1995) and Pajares and Miller
(1995) also explained that self-efficacy is specific to particular
tasks or certain domains. Of the major sources of developing
self-efficacy, personal performance accomplishments contributed
the most influence (Lent, Lopez, & Bieschke, 1991). Lent et al.
recommended educational interventions for students with low
mathematics self-efficacy. They suggested that numerous
successful structured mastery experiences would contribute to a
more positive mathematics self-efficacy in students. Self-
efficacy may impact important outcomes such as career choice
(Hackett & Betz, 1989), and effort and persistence in the face of

obstacles (Bandura, 1986; Borget & Gilroy, 1994). More recent
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research (Pietsch, Walker, & Chapman, 2003) confirmed that
self-efficacy in mathematics predicts future performance in
mathematics.

Many researchers have studied the impact of attitude on
student learning of mathematics. A favorable attitude toward
mathematics would lead to moving toward behavior whereas
avoidance behavior is associated with a negative attitude
(Mager, 1968). Mager asserted that teachers should influence
students to develop a favorable attitude toward a subject in order
to maximize the possibility of remembering, using, and learning
more about that subject in the future.

Ma and Kishor (1997) conducted a meta-analysis on the
relationship between attitude toward mathematics (ATM) and
achievement in mathematics (AIM). The overall mean effect was
"statistically significant but not strong for educational practice"
(p- 39) and the effect size for the causal relationship for ATM
(cause) and AIM (effect) was insignificant and deemed to have
no practical implication. They concluded that current attitude
measures do not reflect true attitudes and recommended that
researchers should refine these assessment tools for better future
results. Ma and Kishor also believed that the ATM-AIM

relationship may be impacted the most during the junior high
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school years. Singh, Granville, and Dika (2002) found that
attitude is influential in explaining mathematics achievement
variations.

Moyer and Jones (1998) claimed that the use of
manipulatives has "the potential to improve student attitudes and
student intrinsic motivation" (p. 35). Students used
manipulatives as learning tools for constructing meaning. Moyer
and Jones advocated the use of manipulatives as often as other

mathematical tools such as rulers and protractors.
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CHAPTER 3

THE RESEARCH DESIGN

Introduction

This study was designed to examine the perceptions of
high school graduates who experienced the mathematical
materials from Hands-On Equations when the students were in
the sixth grade in 1997. As a comparison, the investigation also
included the perceptions of students who did not experience
Hands-On Equations during their 1997 sixth-grade year. Four
research questions were addressed.

1. For the students who experienced Hands-On Equations,
what is the perceived value of these materials?

2. Did the Hands-On Equations lessons create student
perceived differences in subsequent learning in algebra
classes for students taught with Hands-On Equations?

3. Is there a difference in present mathematics self-
efficacy between students taught with Hands-On
Equations and those who did not experience these

teaching materials?
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4. Are there other differences related to (a) attitudes
toward mathematics, (b) student achievement in
mathematics, and (c) student ability to solve simple
linear equations between students taught with Hands-
On Equations and students who were not?

Three components are relevant to this study: the 1997
work with the sixth-grade classroom and the action research
study conducted at that time, the design of the current study, and
the pilot interview that was conducted in order to evaluate the
feasibility of the research design.

This chapter first describes the Hands-On Equations
materials. This is followed by a description of the 1997
experience with these materials. The chapter then presents the
design of the study including a description of the participants,
the data collection procedures that were employed in the study,
and the methods used for data analysis. Finally, this chapter
documents the outcome of a preliminary interview conducted as
a pilot study.

Hands-On Equations

The Hands-On Equations Learning System is the full name

for the materials referred to as Hands-On Equations in this

study; Henry Borenson is the creator of these copyrighted
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materials. Hands-On Equations makes algebraic concepts
concrete and thus attainable for all in grades three to adult
(Borenson, 1994). Hands-On Equations is a set of instructional
materials that includes student and teacher manipulative
materials, three levels of teacher manuals that explain the 26
lessons, and worksheets for each lesson. The system "provides
concrete and invaluable experience in using the basic ideas
associated with algebraic linear equations" (Borenson, 1994, p.
23). Borenson (1994) claimed that the system imparts important
mathematical content, promotes mathematical interest, and
heightens students’ self-perceptions as learners.

Borenson (1994) asserted that some of the understandings
that may be attained by students using these materials are the
concepts of a balanced equation, variables, and essential
concepts related to zero including the additive inverse and the
additive identity. The scope of the lessons is described in a
summary of the lesson objectives for each of the 26 lessons
included in Hands-On Equations; the summary is included in
Appendix A.

Borenson’s web site, borenson.com, includes links to a
brochure, a sample problem, a video demo, photos, a price list,

an order form, a current seminar schedule, verbal problems,
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program validation, an interview with Dr. Borenson, and contact
information. The “brochure” (Borenson and Associates, n.d.a)
and “sample problem” (Borenson and Associates, n.d.c) links
describe the materials. The teacher manual that accompanies
Hands-On Equations also describes the materials and procedures
(Borenson, 1994). During Hands-On Equations lessons, students
are actively engaged in a game-like atmosphere where “legal
moves” dictate the moving of pawns and cubes on an individual
mat that pictures a balance scale. Comparable teacher materials
that are slightly larger are used to model the various lessons.
The teacher balance scale is a stationary, plastic balance scale
on which both blue and white pawns and red and green number
cubes may be placed. The blue pawns represent the variable x
and the white pawns are called “star” until it is revealed that
they represent (-x). Red and green integer number cubes
represent positive and negative integers used as constants. These
pawns and cubes are manipulated to solve simple linear, one-
variable equations such as 2(x + 4) + x = 2x + 10 and 2x + (-x)
+ 3 =2(-x) + 15. By Lesson 7, students are able to solve for the
unknown x in equations such as 2(x + 4) + x = x + 16 (Dvorak,

1988).

94



1997 Experience with Hands-On Equations

In January 1997, this researcher taught Hands-On
Equations to a class of 23 sixth graders. Algebra plus problem
solving was the focus of that month in this classroom in Baldwin
Junior High School. A 45-minute lesson was taught on most
days starting January 4, 1997. The first 18 class sessions
followed the explicit guidelines provided in the Hands-On
Equations teacher manual. Sample pages from the teacher
manual are provided in Appendix B. A summary that identifies
the concepts that were covered in the first 18 lessons during
January 1997 is found in Appendix A. The last 3 class sessions
linked algebraic problem solving with the Hands-On Equations
methods. Hands-On Equations only deals with problem solving
incidentally; that component was added because this
researcher/teacher believes that the ability to solve real
problems is the ultimate purpose of studying mathematics. An
action research question to be answered was, "Would algebraic
thinking aid elementary-aged students in problem solving?" A
test that was used as both the pretest and posttest and that
required problem solving was compiled from resources included

with Hands-On Equations. A copy of that test is in Appendix C.
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The students were able to build on the algebraic ideas and
terminology when the problem-solving aspects were introduced
later in the month. While only 3 of the 21 class sessions with
the students specifically dealt with problem solving, students
were able to employ their newly-learned Hands-On Equations
information when solving problems. Armed with a vocabulary
and an intuitive, conceptual understanding of terms such as
"equals" and "variables," the students were given word problems
that could be answered by creating and solving one-variable
equations. The students were able to discern what the questions
were asking for, or the unknowns. The link to, and support for
problem solving, came when the class, with teacher guidance,
devised a problem-solving sequence that incorporated their new
algebraic knowledge. This sequence worked well for this group
of sixth graders and was visible on the board when they took the
posttest.

I. Read the problem.

2. Label the unknown (x).

3. Set it up.

4. Write the equation.

5. Solve the problem.

Find the unknown (x).
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6. Write down the answer.

x=7

7. Check your work.

Write down the check.
Participants in the 1997 Study

The sixth-grade classroom in which this study occurred
had 23 student members; none were minority students. Of these
23 students, 13 were boys and 10 were girls. Special services
were provided to 7 students; 2 of the boys were identified as
gifted and 3 boys and 2 girls were identified as learning
disabled. None of these 7 students who were identified for
special services were out of the room during the Hands-On
Equations lessons. The teacher labeled 2 students as low-
achieving with no official designation or special services
provided to them.

Analysis of the data was conducted for only 18 of these 23
students since only 18 had both pretest and posttest scores for
various reasons. Of these 18 students, 11 were boys and 7 were
girls. The 7 students who received special services were
included in these 18 students. The 2 low-achieving students who
were not identified as needing special services were also

included in the 18 who had both a pretest and a posttest.
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Measurement for the 1997 Study

The specific attribute of interest in this action research
study was problem-solving ability as affected by the learning of
the Hands-On Equations approach to foundational algebraic
concepts. This cognitive attribute was defined as the ability to
answer correctly problems that were administered in pretest and
posttest settings. Gall, Gall, and Borg (2003) explained that “the
one-group pretest-posttest design is especially appropriate when
you are attempting to change a characteristic that is very stable
or resistant to change” (p. 391). This design works when “the
likelihood that extraneous factors account for the change is
small” (p. 391). The sixth graders had no other classroom
exposure to algebra or algebraic problem solving between test
dates. It was highly unlikely that the students learned algebra or
algebraic problem solving in any other way during the interim
between test dates. Thus the learning of algebra and algebraic
problem solving qualified as resistant to change. Maturation over
this short amount of time did not likely affect the improvement
of students’ algebraic problem-solving skills.

A seven-question, word-problem test was compiled from
Hands-On Equations Verbal Problems Sides A and B (Borenson,

1994) to measure student achievement and to use as both the
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pretest and the posttest. The same form of the test was used
because there were at least six weeks between test
administrations. Also, the students did not see the test results
from the pretest and thus had no opportunity to study the pretest
before taking the posttest. The students had an awareness of the
purpose of the pretest in relation to general problem solving but
had no way to link the pretest with the Hands-On Equations
procedures that were subsequently taught to them. The students
recognized the alignment of the posttest with Hands-On
Equations and the problem-solving work that had transpired in
class prior to the posttest.

The pretest was administered on January 2, 1997. A first
posttest was done on February 14, 1997, and the last posttest was
given on April 4, 1997. An ethical concern arose during the
administration of the first posttest. This posttest was given
immediately after the completion of the 21 teaching sessions on
February 14, 1997. Recognizing the diligent work of her
students during the preceding six weeks, the classroom teacher,
with good intentions, helped several students during the posttest
thus invalidating the outcomes of their tests. Since both the
researcher/teacher and the classroom teacher were present during

all of the teaching sessions and during the posttest, it was
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obvious that her interest was in helping each child do as well as
possible, thinking that a little bit of additional information might
allow them to display all of their new algebraic knowledge.
These actions tainted the posttest results. Consequently it was
decided to retest the students after a period of time had elapsed.
The second administration of the posttest was on April 4, seven
weeks after the first attempt. The data from the January 2
pretest and the April 4 posttest are reported.

Since this researcher/teacher was an invited guest in the
sixth-grade class, the results gathered were not used for high-
stakes decisions. The classroom teacher recorded daily
homework from the work in January and February as she would
any other assignments in the mathematics curriculum. Student
results from the pretests and posttests contributed to diagnosis
and formative judgments about the students but did not impact
placement decisions or summative grading.

The 1974 Family Education Rights and Privacy Act or
FERPA (the Buckley Amendment) spells out student privacy
rights. In accordance with FERPA, none of the data collected
has or will be linked with any particular student in a way that

would allow anyone to discern the identity of the student.
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Students were treated with dignity and were encouraged to
take risks in a safe, supportive classroom climate that promoted
student success. Psychologically, students appeared to enjoy the
Hands-On Equations sessions and learned as evidenced by their
daily work and the posttest results.

Test results. While 23 students made up the sixth-grade
class, 18 students had both pretest and posttest score