

		Relate and compare different forms of representation for a relationship.
	Students will use concrete models to represent algebraic equations in one variable with	Create and use representations to organize, record, and communicate mathematical ideas.
		Select and use various types of reasoning and methods of proof.
		Apply and adapt a variety of appropriate strategies to solve problems.
	Students will use kinesthetic motions (physical actions) to solve algebraic equations in one variable with unknowns on both sides of the equation.	Select and use various types of reasoning and methods of proof.
	Students will demonstrate an understanding of the concepts of equivalence, variable, constant, equation, equal to (=), and not equal to (\ddagger).	Develop an initial conceptual understanding of different uses of variables.
		Relate and compare different forms of representation for a relationship.
		Understand the meaning and effects of arithmetic operations with fractions, decimals, and integers.
		Recognize and generate equivalent forms for simple algebraic expressions and solve linear equations.
	Students will use the Subtraction Property of Equality with variables to form equivalent statements when solving algebraic equations in one variable with unknowns on both sides	Understand and use the inverse relationships of addition and subtraction, multiplication and division, and squaring and finding square roots to simplify computations and solve problems.
		Develop and evaluate mathematical arguments and proof.
		Select and use various types of reasoning and methods of proof.
		Organize and consolidate their mathematical thinking through communication.
	Students will use substitution and mental math to check solutions to algebraic equations	Communicate their mathematical thinking coherently and clearly to peers, teachers, and others.
	in one variable.	Analyze and evaluate the mathematical thinking and strategies of others.
Lesson 3		Use the language of mathematics to express mathematical ideas precisely.
		Relate and compare different forms of representation for a relationship.
	Students will use concrete models to represent algebraic equations in one variable with	Create and use representations to organize, record, and communicate mathematical ideas.
Lesson 4	unknowns on both sides of the equation.	Select and use various types of reasoning and methods of proof.

		Apply and adapt a variety of appropriate strategies to solve problems.
	variable with unknowns on both sides of the equation.	Select and use various types of reasoning and methods of proof.
		Understand the meaning and effects of arithmetic operations with fractions, decimals, and integers.
		Understand and use the inverse relationships of addition and subtraction, multiplication and division, and squaring and finding square roots to simplify computations and solve problems.
	Students will use the Subtraction Property of Equality with variables and with constants to form equivalent statements when solving algebraic equations in one variable.	Recognize and generate equivalent forms for simple algebraic expressions and solve linear equations.
		Develop and evaluate mathematical arguments and proofs.
		Select and use various types of reasoning and methods of proof.
		Organize and consolidate their mathematical thinking through communication.
	Students will use substitution and mental math to check solutions to algebraic equations	Communicate their mathematical thinking coherently and clearly to peers, teachers, and others.
	in one variable.	Analyze and evaluate the mathematical thinking and strategies of others.
		Use the language of mathematics to express mathematical ideas precisely.
		Apply and adapt a variety of appropriate strategies to solve problems.
	Students will use concrete models and kinesthetic motions (physical actions) to represent	Relate and compare different forms of representation for a relationship.
	and solve algebraic equations in one variable with unknowns on both sides of the equation.	Select and use various types of reasoning and methods of proof.
	Students will add and subtract monomials and combine like terms to form equivalent expressions when solving algebraic equations in one variable.	Recognize and generate equivalent forms for simple algebraic expressions and solve linear equations.
		Understand the meaning and effects of arithmetic operations with fractions, decimals, and integers.
	Students will use Properties of Equality, such as the Subtraction Property of Equality, to form equivalent statements when solving algebraic equations in one variable with	Understand and use the inverse relationships of addition and subtraction, multiplication and division, and squaring and finding square roots to simplify computations and solve problems.
Lesson 5		Recognize and generate equivalent forms for simple algebraic expressions and solve linear equations.

Hands-On Equations(R) Verbal Problems Book: Introduction \& Level I

Students will analyze verbal problems and determine what strategy is best for representing the problem using concrete models or pictorial symbols.

Students will use mathematical models (e.g., concrete, pictorial) to represent and solve application problems involving quantitative relationships with rational numbers.

Students will write down the representation of the unknown elements of the verbal problem.

Students will use multiple strategies (e.g., a 5-step problem solving process, breaking a problem into parts, and determining whether a problem has too much information or not enough information) to solve real-world application problems.

Students will represent physically or pictorially given relations, such as Jim's age 10 years from now given his current age, the amount of rain that falls in three months given the amount it falls in one month, the distance travelled by a train in two hours given the distance it travels in one hour, or a number that is $2 / 3$ of another number.

Apply and adapt a variety of appropriate strategies to solve problems.
Use representations to model and interpret physical, social, and mathematical phenomena. Recognize reasoning and proof as fundamental aspects of mathematics.

Organize and consolidate their mathematical thinking through communication.
Model and solve contextualized problems using various representations, such as graphs, tables, and equations.
Solve problems that arise in mathematics and in other contexts.
Relate and compare different forms of representation for a relationship.
Create and use representations to organize, record, and communicate mathematical ideas.
Select, apply, and translate among mathematical representations to solve problems.
Apply and adapt a variety of appropriate strategies to solve problems.
Develop an initial conceptual understanding of different uses of variables.
Create and use representations to organize, record, and communicate mathematical ideas.
Use representations to model and interpret physical, social, and mathematical phenomena.
Organize and consolidate their mathematical thinking through communication.
Communicate their mathematical thinking coherently and clearly to peers, teachers, and others.

Apply and adapt a variety of appropriate strategies to solve problems.

Create and use representations to organize, record, and communicate mathematical ideas. Select, apply, and translate among mathematical representations to solve problems. Use representations to model and interpret physical, social, and mathematical phenomena. Relate and compare different forms of representation for a relationship.
Model and solve contextualized problems using various representations, such as graphs, tables, and equations.
Recognize reasoning and proof as fundamental aspects of mathematics.
Select and use various types of reasoning and methods of proof.

		Students will represent and solve application problems including problems involving distance, money, age, and patterns of numbers (e.g., consecutive numbers, consecutive even numbers, and consecutive odd numbers).	Model and solve contextualized problems using various representations, such as graphs, tables, and equations.
			Solve problems that arise in mathematics and in other contexts.
			Recognize reasoning and proof as fundamental aspects of mathematics.
			Organize and consolidate their mathematical thinking through communication.
			Communicate their mathematical thinking coherently and clearly to peers, teachers, and others.
			Use the language of mathematics to express mathematical ideas precisely.
			Solve problems that arise in mathematics and in other contexts.
		Students will provide the answer to verbal problems in full sentence format.	Organize and consolidate their mathematical thinking through communication.
			Communicate their mathematical thinking coherently and clearly to peers, teachers, and others.
			Use the language of mathematics to express mathematical ideas precisely.
		Students will use substitution and mental math to check solutions to application problems involving algebraic equations in one variable.	Select and use various types of reasoning and methods of proof.
			Organize and consolidate their mathematical thinking through communication.
			Communicate their mathematical thinking coherently and clearly to peers, teachers, and others.
			Analyze and evaluate the mathematical thinking and strategies of others.
			Use the language of mathematics to express mathematical ideas precisely.

